Lipika Adhya, Tarunendu Mapder, Samit Adhya
Department of Engineering Physics, B. P. Poddar Institute of Management and Technology, Kolkata, West Bengal, India.
DOI: 10.4103/0976-9668.149120


Background: There is experimental evidence of many cases of stable macromolecular conformations with charged amino-acids facing lipid, an arrangement thought to be energetically unfavourable. Methods and Objectives: Employing classical electrostatics, we show that, this is not necessarily the case and studied the physical basis of the specific role of proximity of charges to the dielectric interface between two different environments. We illustrate how self and induced energies due to the dielectric medium polarization, on either side of the interface, contribute differentially to the stability of a pair of charges and hence the mutual conformation of the S3b-S4 α-helix pair of the voltage-gated K + channel. Results and Conclusion: We show that (1) a pair of opposite charges on either side of lipid-protein interface confers significant stability; (2) hydrophobic media has an important role in holding together two similar repelling charges; (3) dielectric interface has stabilizing effect on a pair of charges, when an ion is closer to its interface than its neighboring charge; (4) in spite of the presence of dielectric interface, there is a nonexistence of any dielectric effect, when an ion is equidistant from its image and neighboring charge. We also demonstrate that, variation in dielectric media of the surrounding environment confers new mutual conformations to S3b-S4 α-helices of voltage sensor domain at zero potential, especially lipid environment on the helix side, which improved stability to the configuration by lowering the potential energy. Our results provide an answer to the long standing question of why charges face hydrophobic lipid membranes in the stable conformation of a protein.

Keywords: Electrostatic theory, induced energy, lipid, self energy.

Please follow and like us:
News Reporter