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Abstract
Background: Malaria poses an enormous threat to humanity with ever increasing cases annually. The research in the field 
of medical is contributing quite a lot in providing methods for premature diagnosis of malaria. Apart from medical research, 
information technology is also playing a vital role in proposing efficient methods for malaria diagnosis. Aim: To minimize the 
manual interference and boost the diagnosis accuracy, the automated systems are under study lately.  In the proposed work, an 
Optimized Deep Malaria Classifier (ODMC) is proposed for accurate and efficient malaria blood smear classification. Method: A 
dataset comprising of healthy and infected images of malaria blood smears is preprocessed using color space transformation and a 
series of other image enhancement steps. The deep features are extracted using the well-trained layers of pre-trained Convolutional 
Neural Networks (CNNs) including ResNet101(RSN101) and SqueezeNet (SQN). Apart from this, the local handcrafted features 
are also extracted from the preprocessed dataset using Local Binary Patterns (LBP). Both the deep features and the handcrafted 
features are serially fused together to formulate a compact feature vector which is then optimized using Linear Discriminant 
Analysis (LDA). The optimized vector is the classified using multiple classifier kernels. Results: The ODMC achieved 99.73% 
accuracy and 99.76% precision whilst maintaining an efficient prediction speed and training time.
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INTRODUCTION
Malaria is one of the most significant public health 
challenges globally, especially in regions with hot, humid 
climates where the Anopheles mosquito thrives. The 
disease is caused by the transmission of Plasmodium 
parasites through the bites of infected mosquitoes. 
Among the five Plasmodium species that infect humans, 
Plasmodium falciparum and Plasmodium vivax are 
particularly deadly, leading to severe health complications 
and high mortality rates.[1] The prevalence of malaria 
is staggering, with over 210 million cases reported in 
more than 90 countries by the end of 2016. Alarmingly, 
this number rose to 228 million cases worldwide by 

2018, highlighting the persistent threat that malaria 
poses to global health.[2] In addition to its widespread 
prevalence, malaria is responsible for significant mortality, 
particularly among vulnerable populations such as young 
children. In 2018 alone, an estimated 405,000 people 
died from malaria, with children under five years of 
age accounting for 67% of these deaths. The burden 
of malaria is disproportionately high in sub-Saharan 
Africa, which accounts for 93% of all malaria cases and 
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94% of malaria-related deaths globally.[3] These statistics 
underscore the urgent need for effective malaria control 
and prevention strategies.
Traditional malaria diagnosis relies on the manual 
examination of blood smears under a microscope by 
skilled technicians. This process, while effective, is time-
consuming and labor-intensive. Accurate parasite detection 
and quantification are crucial for proper diagnosis, treatment, 
and monitoring of disease progression. However, the manual 
nature of this process introduces variability and the potential 
for human error, which can lead to misdiagnosis, incorrect 
treatment, and ultimately, poor patient outcomes.[4] Factors 
such as the experience of the technician, the quality of the 
microscope, and environmental conditions can all impact 
the accuracy of the diagnosis. Given the limitations of 
manual diagnosis, there has been a growing interest in the 
development of automated systems that can assist or even 
replace human technicians in the diagnosis of malaria. 
Recent advancements in machine learning and deep learning 
have opened new avenues for developing such automated 
systems. These technologies have demonstrated remarkable 
success in various medical imaging applications, including 
skin cancer detection, brain tumor segmentation, and liver 
disease classification.[5] By leveraging the power of deep 
learning, it is possible to develop models that can analyze 
blood smear images with high accuracy and efficiency.
In this study, we address the critical need for an automated, 
accurate, and efficient malaria diagnosis system by 
proposing an Optimized Deep Malaria Classifier (ODMC). 
The primary objective of our research is to develop a novel 
feature fusion-based model that combines the strengths 
of state-of-the-art deep Convolutional Neural Networks 
(CNNs) with handcrafted texture features. Specifically, 
our approach integrates deep features extracted from 
ResNet101 and SqueezeNet, two well-established CNN 
models, with low-level texture features derived from 
Local Binary Patterns (LBP). This fusion of deep and 
handcrafted features is designed to enhance the model’s 
ability to discriminate between healthy and infected blood 
smear images, leading to improved diagnostic accuracy. 
The specific aims of our study include:
•	 Developing a robust feature fusion strategy that 

effectively combines deep and handcrafted features 
to capture both high-level and low-level information 
from blood smear images.

•	 Implementing an advanced image preprocessing 
technique that enhances image contrast by mapping 
the images to the HSV color space and separately 
adjusting the Hue, Saturation, and Value channels. 
This preprocessing step is intended to improve the 
quality of the input images, thereby boosting the 
performance of the ODMC model.

•	 Employing LDA to optimize the fused features, 
reducing their dimensionality and mitigating the risk 
of overfitting. This optimization process is crucial 
for ensuring that the model remains both accurate 
and computationally efficient.

•	 Evaluating the performance of the ODMC model 
using a set of classifiers to determine its accuracy, 
efficiency, and potential for real-world application.

The research questions guiding this study are:
•	 How does the fusion of deep learning features with 

handcrafted texture features improve the accuracy 
and robustness of malaria diagnosis from blood 
smear images?

•	 What role do image preprocessing techniques, such 
as HSV color space mapping, play in enhancing the 
diagnostic accuracy of deep learning models?

•	 How well can the fusion of multiple CNN models 
and a handcrafted feature extractor assist in accurate 
classification of malaria blood smear classification?

•	 How effective is a feature optimization algorithm 
such as LDA in optimizing feature selection, reducing 
overfitting, and improving the overall performance 
of the ODMC model?

By addressing these research questions, our study aims 
to contribute to the development of reliable and efficient 
automated systems for malaria diagnosis. The proposed 
ODMC model, which integrates deep learning with 
traditional image processing techniques, has the potential 
to significantly improve the accuracy and efficiency of 
malaria diagnosis, ultimately reducing the burden of this 
deadly disease on global health. With an accuracy rate 
of 99.73%, our ODMC model demonstrates its capability 
as a highly effective tool in the fight against malaria.

RELATED WORK
Accurate malaria blood smear diagnosis and classification 
is an active research area in the field of medical imaging. 
Many works have been proposed in the field of malaria 
diagnosis till now. The work[6] addresses the challenge 
of detecting rouleaux formation, a common red blood 
cell abnormality that complicates malaria diagnosis. 
The authors collected 231 images each of normal and 
rouleaux-affected blood cells, creating a dataset of 3044 
segmented images. Two CNN models were developed and 
trained to classify these images. The first model achieved 
a validation accuracy of 87.91% with 300x300 pixel 
images, while a second model using depthwise separable 
CNN layers improved accuracy to 90.95%. This study 
highlights the importance of image size in optimizing 
model performance and contributes a new dataset to aid 
in developing more robust automated malaria diagnostic 
systems capable of detecting both parasites and blood 
cell abnormalities. 
The authors[7] present an Optimal Machine Learning-
based Automated Malaria Parasite Detection and 
Classification (OML-AMPDC) model, designed to 
address challenges in malaria diagnosis, such as limited 
expert availability and poor image quality. The model 
starts with preprocessing steps that include adaptive 
filtering for noise removal and contrast enhancement 
using the CLAHE technique. Features are extracted 



378 Journal of Natural Science, Biology and Medicine  ¦ Volume 15 ¦ Issue 2 ¦ July-December 2024

A Novel ODMC Model for Malaria Blood Smear Classification using Deep Feature Fusion and Optimization

using Local Derivative Radial Patterns (LDRP), and 
classification is carried out using a Random Forest (RF) 
classifier. To optimize the RF classifier’s performance, 
the Particle Swarm Optimization (PSO) algorithm is 
employed, specifically tuning parameters like max_
depth and n_estimators. Experimental results using a 
benchmark dataset demonstrate that the OML-AMPDC 
model outperforms recent approaches in malaria 
parasite detection and classification. Shi et al.[8] utilized 
plasmodium cell images from Central South Hospital, 
Wuhan University. Dataset augmentation is performed 
with the help of arbitrary point revolution, horizontal and 
vertical flipping, Gaussian blur and contrast improvement. 
Variable edge detection is utilized to recognize distorted 
images. Enhanced image information is given to the 
fused neural network architecture including Inception 
V3, Resnet 50 and Inception V2 which performs feature 
learning and makes a component vector subsequently. 
Pattanaik et al.[9] utilized 1150 cell images acquired from 
high end magnifying microscope and regular cell phones 
at different amplification scales. The pre-processing is 
done by resizing images obtained at 1000x amplification 
into 50x50 pixels impeccable square dimension. Images 
obtained at 750x750 pixels are also field stained and 
examined at x1000 amplification. A novel system is put 
together which comprises of FLANN based CAD model 
for feature extraction, Stacked Sparse Autoencoder (SSAE) 
model is utilized to restrain the highlights relying upon 
measurement and concealed layers. 
The research[10] addresses the critical need for early and 
accurate malaria diagnosis by introducing two deep 
learning algorithms specifically designed for malaria 
classification. The first algorithm utilizes a binary classifier 
convolutional neural network (CNN) model, achieving 
an accuracy of 90.20%. The second, a customized CNN 
model, demonstrates an even higher accuracy of 96.02%. 
These models were developed to improve the precision and 
efficiency of malaria diagnosis, especially in regions where 
expert microscopists are scarce. The study highlights 
the superior performance of these models compared to 
existing methods, underscoring their potential to enhance 
automated malaria detection and reduce global mortality 
rates associated with the disease. Rajaraman et al.[11] used 
dataset containing 27,558 parasitized and healthy cell 
images from Kaggle. Squeezing layer of the SqueezeNet 
along with channels of differing sizes is used for feature 
learning and extraction. Global Average Pooling (GAP) is 
utilized for dimensionality reduction. Three convolution 
layers and two fully connected layers are implemented 
completely in the DL model for feature learning.
Vijayalakshmi et al.[12] resized the images to 224 pixels’ 
dimension with uniformity of 100dpi and utilized mean 
and variance filters for preprocessing. Improved images 
from preprocessing are given to CNN with no further 
change. Pooling layers and fully connected layers are 
used in the pretrained VGG model to perform feature 
extraction. The two CNN models VGG-16 and VGG-

19 are reused with changes by joining them with SVM 
classifier to make a VGG-SVM Model. Abbas et al.[13] 
utilized powerful Dynamic Convolutional Filtering (DCF) 
to segment parasitized parts of cells. Intensity based 
highlights, color highlights, texture highlights, LBP and 
HSV highlights are among the prominent elements in the 
feature extraction stage. Abbas et al.[14] used adaptive 
gaussian mixture based dynamic segmentation to segment 
the affected parts based on color grading and intensity 
for the isolation of parasitized malaria cells. 
Yang et al.[15] used parasite screening and WBC extraction 
based on histogram intensities of the grayscale images 
utilizing Otsu’s segmentation technique. Force highlights 
and shading highlights are utilized in the preprocessing 
stage and later on convolutional layers alongside fully 
connected layers are utilized to separate all the areas of 
interest. Modified CNN including 7 convolution layers, 
three pooling layers, three fully connected layers and a 
delicate layer has been proposed. Santosh et al.[16] predicted 
malaria affected regions based on 4 Geographical locations 
& Rural health centers. Multivariate imputation is used 
by the chained equation to handle the missing data points 
from environmental data. The multivariate imputed 
data is passed on to LSTM classifier for prediction of a 
certain period. The study[17] introduces an AI-based object 
detection system for malaria diagnosis, named AIDMAN, 
which leverages advanced deep learning techniques to 
improve the accuracy and efficiency of malaria detection, 
particularly in resource-limited areas. AIDMAN uses the 
YOLOv5 model for detecting cells in thin blood smears, 
followed by an attentional aligner model (AAM) for 
cellular classification and a CNN classifier for diagnosis. 
The system achieves an impressive diagnostic accuracy 
of 98.62% for individual cells and 97% for blood-smear 
images. AIDMAN’s performance is on par with that of 
experienced microscopists, making it a promising tool for 
malaria diagnosis in regions where trained professionals 
and equipment are scarce. The study highlights the potential 
of AI to enhance malaria detection, reduce transmission, 
and ultimately save lives, particularly in high-burden 
areas like Africa.
The study[18] tackles the challenge of malaria diagnosis, 
which causes over 500,000 deaths annually. Traditional 
microscopy, while effective, is slow and prone to errors, 
highlighting the need for automation. This research 
employs Convolutional Neural Networks (CNNs) with 
VGG16 architecture, Transfer Learning, and Adaptive 
Boosting to analyze microscopic blood slides. The dataset 
is enhanced through preprocessing to ensure diversity 
and robust model training. By leveraging transfer 
learning, the model improves its ability to classify 
malaria-infected erythrocytes accurately. Addressing 
limitations of previous CNN-based methods, such as 
sensitivity and dependence on large datasets, this study 
incorporates adaptive boosting and hyperparameter 
tuning. The resulting system achieves over 96% accuracy, 
providing a reliable, automated solution for malaria 
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detection in clinical settings. Das et al. [19] performed 
illumination correction using grayish induction. They 
performed noise reduction using mean filter based on 
geometry. Marker controlled watershed segmentation 
is utilized to segment erythrocytes from microscopic 
images. Co-occurrence based on gray matrix GLCM 
is used. The purpose is to obtain the texture features 
including entropy, correlation, space etc. More than 70 
textural features & 15 shape features are put into use 
to differentiate between more than five types of blood 
cells. Naïve Bayes classifier is used along with SVM to 
accurately classify malaria infected cells from healthy 
cells. Malaria diagnosis traditionally relies on manual 
microscopy, which is time-consuming and prone to 
error. To improve accuracy and efficiency, an ensemble 
deep learning model has been developed[19] using 
retrained VGG16, VGG19, and DenseNet201 networks, 
combined with adaptive weighted averaging and max 
voting techniques. This model, enhanced with data 
augmentation and various image processing methods, 
achieves a diagnostic accuracy of 97.92% for identifying 
malaria parasites in red blood cell images, offering a 
promising automated solution for more reliable and 
efficient malaria detection.

PROPOSED METHODOLOGY
In this study, we propose a novel ODMC model that 
integrates deep learning and handcrafted features to 
enhance malaria detection. The model combines features 
learned from the deep learning models RSN-101 and 
SQN with textural features extracted using LBP. To 
improve image quality, we apply a contrast enhancement 
technique in the HSV color space, adjusting the hue, 
saturation, and value channels separately, which makes 
the infected regions more prominent. The images are 
resized to a uniform dimension of 224 pixels to maintain 
consistency. The deep learning models are trained on 
RGB images, while the LBP features are extracted from 
grayscale images. These features are then concatenated and 
optimized using LDA, which selects the most significant 
features based on interclass and intraclass variance, 
thus reducing computational complexity and enhancing 
classification accuracy. The final features are classified 
using various classifiers, resulting in an impressive 
accuracy of 99.73%, demonstrating both high efficiency 
and accuracy in malaria diagnosis.
 The workflow of proposed model is shown in Figure 1. 
The functioning of proposed model is discussed in detail 
with respect to all the steps data acquisition, preprocessing, 
feature extraction and optimization, and classification in 
coming sections. 

Data Gathering and Preparation
Data gathering and preparation are the primary tasks 
of our proposed work as all the upcoming steps are 
dependent on them. Both the steps are discussed in the 
separate sections below.

Data Collection 
The dataset used in this work is obtained from Kaggle 
which originally contains 27,558 blood smear images 
divided into two classes namely parasitized and uninfected 
with each class containing 13,779 images. The images 
are in RGB color channel and varying in terms of scale 
as shown in Figure 2. 

Data Preparation and Preprocessing
Preprocessing is a very crucial step in any image analysis 
problem due to its massive impact on the end result. 
Several preprocessing steps are employed in this work 
as well to make our model better deduct information 
from malaria affected images. Initially, all the images 
are in different scales and sizes which creates biasness 
and mislead results due to which they are resized into 
224-pixel dimension which resolves this problem. The 
dataset images are also converted to 2-dimesional 
grayscale channel to utilize them in LBP which takes 
grayscale images as input as shown in Figure 2. 

Figure 1: ODMC Workflow Architecture.

Color grading improvement and contrast enhancement 
are widely utilized approaches in the field of medical 
imaging as they amplify the crucial information in 
the targeted images and increase the gross quality of 
images. Better quality images are more likely to provide 
better results as they assist proposed model in terms 
of clarity and interpretation. Various image contrast 
enhancement techniques are implemented by several 
works over the time.[20-23] In the proposed work, images 
are enhanced by converting them to HSV color space 
and then separately enhancing the hue, saturation and 
value channel carefully such that the parasitized part of 
image gets more prominent and highlighted thus making 
it easier for the proposed model to classify more precisely. 
The HSV color processing makes the color of defected 
regions stand out as compared to the rest of image part 
as shown in Figure 3.
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Figure 2: RGB to Grayscale Conversion.

Figure 3: Image Enhancement in HSV Color Space.

Feature Extraction (FE)
After data acquisition and preparation, the next step is to 
acquire features from it which can be done using either 
deep learning models or by using a handcrafted feature 
learner. Numerous techniques have been employed in 
medical imaging depending on the nature of images and 
required features. Several works attained color, shape, 
geometric shape, edge, corner, blob, scale and textural 
features using different techniques over the course of 
time to extract suitable information from concerned 
images.[24-27] In the proposed work, low level features are 
derived by means of Local Binary Patterns (LBP) and 
deep features are obtained using two deep CNN models 
which are discussed in the coming sections.

Low Level Features
LBP has been implemented in many medical imaging, text 
identification and facial recognition problems in order to 
derive texture-based features and was first presented in 
1994.[28] It has played a vital role in prevailing the vital 
details from images in many works where it has also been 
used in merger with many other models and has showed 
promising results.[29,30] In the suggested work, the images 
containing malarial parasite symptoms have a varying 
texture as compared to the rest of the images. Therefore, 
LBP is utilized to better learn those varying features and 
assist in finalizing better results. In LBP, a 3x3 mask is 
utilized and threshold is compared with neighborhood 
pixels.[31] Image dataset is converted into grayscale and 
then passed on to LBP which extracts 59 features from 
27,558 images given to it. LBP extracts and calculates 
features using the Equation 1:

   (1)
In Equation 1,  and  represents the starting seed threshold 
pixel and the adjacent pixels respectively. In this case, 
the number of Q pixels are chosen for a surrounding area 
R. Maximum information can be obtained with close 
distance pixels and this relation decreases as the distance 
between pixels gradually increases due to which the area 
radius R is kept fairly small.[32,33] 

Figure 4: Original Images (Left). Images After 
Performing LBP Operation (Right).

Figure 4 shows some of the original images and their 
situation when LBP is operated in them. RGB images are 
converted into grayscale prior to LBP implementation.

Deep Features
Although, low level features can be useful in many tasks 
but they have their limitations when presented a larger 
dataset as they are not deeply learned enough to increment 
the performance of engineered model. Moreover, a 
particular handcrafted feature extractor can only draw 
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Feature Fusion and Selection
In this phase, the features extracted by RSN-101 
(27558x2048) and SQN (27558x1000) are merged 
together with the approach of serial feature fusion. This 
creates a compact package comprising of collective 
attributes (27558x3048) delivered by both the frameworks 
constituting both important and non-important attribute 
vectors and needs to be optimized for better gain of 
results and complexity handling. LDA has been efficiently 
implemented in many image processing related tasks for 
modality classification,[46] feature dimensionality reduction 
and optimization.[47] In the proposed work, LDA is used as 
a feature selector which maximizes the variance between 
different classes and increases separation. 
Given two different dataset classes X1 and X2 whose 
features are represented in the form of matrices in Eq. 2.

   (2)

The mean of each data class is calculated individually as 
well as mean of entire data compilation is also calculated 
using the sum of all data classes as shown in Eq. 3 where 
l1 and l2 are the inferred probabilities of the classes, M1 
and M2 be the mean of class 1 and class 2 individually 
and M3 is the mean of entire dataset.[48]

   (3)
LDA works by maximizing the between class variance 

to the within class variance which is calculated using Eq. 
4 and Eq. 5 respectively.

   (4)
In Eq. 4, Vw represents within class variance and varn 
denotes the estimated variance of concerned class. 

   (5)

In Eq. 5, Vb represents between class variance, Mj denotes 
overall mean of all the classes. In the proposed work, LDA 
takes the fused features with dimensionality (27558x3048) 
and processes it thus providing a very concise and 
compendious vector containing absolute relevant attributes 
from the original detail set with dimension of (27558x6). 
A clear difference can be seen here between the original 
input complexity and reduced set compactness which later 
in classification stage significantly decreases time exertion. 

Classification
The final phase in the proposed work is the classification 
phase where the parasitized and uninfected image features 
are discriminated from each other. For this purpose, 
all the selected features are passed on to eight different 
classifiers and their kernels including Logistic Regression 
(LR), Linear Discriminant (LD), Quadratic Discriminant 
(QD), Linear SVM (L-SVM), Cubic SVM (CB-SVM), 
Coarse Gaussian SVM (CG-SVM), Fine KNN (F-KNN), 
Coarse KNN (CR-KNN) and Weighted KNN (W-KNN). 

out specific type of features for which it is designed and 
cannot perform all tasks which puts the need of deep 
feature learning models forward.[34] Deep CNN models 
have been widely used in all sorts of medical imaging 
problems where they have outplayed standard feature 
extraction models in terms of results.[35-39] The proposed 
work also employs two deep networks ReNet101 and 
SqueezeNet for feature learning from the dataset images 
which are discussed in coming sections.

ResNet101 (RSN-101)
It is a CNN which has a 101-layer depth and pretrained 
on more than a million images from the image net 
database. RSN-101 has been successfully used for brain 
tumor classification,[40] detecting covid-19 affected chest 
CT scans,[41] breast cancer classification[42] and many 
other medical imaging problems and it has proven to 
be quite effective which motivates us to implement it in 
the proposed work as well. The pre-trained ResNet101 
takes RGB images in 224-pixel dimension as input and 
derives 2048 features from the total of 27,558 images. 

The features are extracted from the pooling layer (pool5) 
of RSN-101 as there is no need of using the classification 
layers since classification is going to be performed after 
fusing the features from other deep networks and LBP at 
the end using the classification learner. So, the features 
are obtained and temporarily saved for the time being. 

SqueezeNet (SQN)
It is a 18 layers deep CNN model which is pretrained 
on a million ImageNet repository-based images and has 
also been employed in many image processing problems 
including covid-19 diagnosis,[43] gastric precancerous diseases 
classification,[44] diabetic retinopathy detection.[45] In the 
proposed model, a total of 27,558 preprocessed images are 
directed to the SqueezeNet which learns a total of 1000 
features out of them. The features are extracted from the 
pooling layer (pool10) of SQN and temporarily stored in order 
to merge them with the features of other two deep models 
after the learning phase is completed. Table 1 shows complete 
comparison of features obtained from both CNN models 
as well as the LBP for the same dataset provided to each.

Table 1: Overview of Extracted Features for Proposed Model.
FE Hand-Crafted Deep Network Feature Layer

Images Total FeaturesParasitized Un infected Total
LBP Y - - 13779 13779 27558 10000x59

ResNet 101 - Y Pool5 13779 13779 27558 10000x2048
Squeeze Net - Y Pool10 13779 13779 27558 10000x1000
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The proposed model achieves an excellent accuracy of 
97.35 while maintaining efficient time consumption rate.

EXPERIMENTATION AND RESULTS
In this section, all the experiments are demonstrated in 
detail along with their corresponding results and evaluation 
measures. The dataset used for the experimentation 
purpose is also discussed. 

Dataset Presentation
The dataset used in this work is originally manufactured 
and prepared by National Institute of Health (NIH) which 
originally contains 27,558 red blood cells images obtained 
from smears. The data compilation is divided among two 
classes i.e., parasitized and uninfected with 13,779 images in 
each class. The images are in RGB channel and are slightly 
varying in terms of scale. The dataset is publicly available 
at Kaggle[49]. Dataset demonstration is shown in Figure 5.

Figure 5: Visualization of Two Dataset Classes.

Performance Evaluation Metrics and Implementation 
Settings
A few metrics are used for the evaluation of proposed 
work which include accuracy, precision, sensitivity, 
recall, specificity, f1 score.[50] Accuracy is calculated by 
dividing the sum of truly predicted matrices to the sum 
of all the matrices calculated as a result of classification. 
The calculation of precision is formulated by dividing 
the rightly predicted true classes to the sum of it with 
wrongly predicted true classes. The calculation of recall 
is formulated by dividing the rightly predicted true 
classes to the sum of it with wrongly predicted negative 
classes. The calculation of sensitivity is formulated 
by dividing the rightly predicted true classes to the 
sum of it with wrongly predicted negative classes. The 
calculation of precision is formulated by dividing the 
rightly predicted negative classes to the sum of it with 
wrongly predicted true classes. The calculation of F1 
score is formulated by dividing the product of precision 
and recall to the sum of them.
In the proposed work, the k-fold cross-validation technique 
is used to prepare the models for testing and prediction 
purposes. In k-fold cross validation, the dataset is 
divided into k number of divisions or subsets. One of 
these divisions is used for training and other one is used 
for testing. The model gets repeated according to the 
value of k.[51] The formula for calculating the k-fold cross 
validation is given in Eq. 6 below:

   (6)

Here, Vf contains the difference between the original 
value di and predicted value L~i. K here denoted the total 
number of folds as per which the data points will be put 
in iteration. In this work, the cross-validation fold is kept 
at 5 folds in all experiments. In the classification phase, 
different measures are used which help in constituting a 
confusion matrix which include True positive rate (TPR), 
True negative rate (TNR), False positive rate (FPR), and 
False negative rate (FNR). In this work, TPR and TNR 
means truly and rightly classified blood smear images. 
While FPR and FNR means inaccurately and mistakenly 
classified blood smear images. F1 score denotes the 
accuracy score of a particular experiment.[52,53]

The experiments are performed on Intel Core i5 with 8GB 
RAM running on Windows 10 OS. The system houses a 
256GB Solid State Drive (SSD) on which the MATLAB 
2020a version is installed to perform all the experiments.

Results Evaluation
In the experimental flow of the proposed work, malaria 
blood smear classification is performed on red blood 
cells images. A total of four experiments are performed 
with various inputs and parameter settings. The 
proposed technique comprises of two pre-trained CNN 
models SqueezeNet (SQN) and ResNet-101 (RSN-
101), a handcrafted feature extractor LBP, and feature 
optimization algorithm LDA. Experiment 1,2 depict the 
classification result of standalone SQN and RSN-101 
both along with LBP respectively. Experiment 3 shows 
the classification results after the feature fusion from 
both deep models and the LBP. The section concludes 
with experiment 4 highlighting the classification results 
of complete model which contains merged features 
from both the deep models and LBP, which are finally 
reduced and selected with LDA. A total of eight classifiers 
along with their various kernels are used for feature 
categorization prominently Logistic Regression (LR), 
Linear Discriminant (LD), Quadratic Discriminant 
(QD), Linear SVM (L-SVM), Cubic SVM (CB-SVM), 
Coarse Gaussian SVM (CG-SVM), Fine KNN (F-KNN), 
Coarse KNN (CR-KNN) and Weighted KNN (W-KNN). 
The results of each experiment combination together 
with appropriate performance evaluation measures are 
mentioned in coming sections.

Experiment 1
Table 2 shows the classification results of experiment 
1, which is performed upon the combination of features 
obtained by the pre-trained SQN and the handcrafted 
LBP. Eight distinct classifiers along with their kernels 
are employed. The cross-validation fold size is kept at 
5 folds and the highest accuracy achieved is 97.35% by 
CB-SVM. The table shows the results yielded by each of 
the employed classifiers with regards to certain important 
performance metrics.
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Table 2: Experiment 1 Results.
Classifier Accuracy 

(%)
Precision 

(%)
Specificity 

(%)
Sensitivity 

(%)
F1 

Score
LR 95.84 95.72 95.73 95.95 95.84
LD 96.47 98.27 98.20 94.86 96.54
QD 91.20 88.02 88.74 94.01 90.91

L-SVM 96.46 97.96 97.90 95.10 96.51
CB-SVM 97.35 97.85 97.83 96.87 97.36
CG-SVM 95.44 97.65 97.54 93.51 95.53
F-KNN 90.74 94.54 94.09 87.86 91.08

CR-KNN 90.28 97.05 96.59 85.48 90.90
W-KNN 91.95 97.12 96.79 88.02 92.34

It can be seen from Table 2. That CB-SVM achieved an 
accuracy of 97.35% while LD achieved an accuracy of 
96.47%. Thus, CB-SVM stands out in terms of accuracy 
in case of Experiment 1. Figure 6. Shows the confusion 
matrix for classifier 
with highest accuracy in case of experiment 1. That is 
CB-SVM.

Figure 6: Confusion Matrix for CB-SVM.

Experiment 2
Table 3 shows the results of experiment 2, which used 
the features learned by pre-trained RSN-101 and the 
handcrafted LBP while keeping rest of the backdrops 
same as experiment 1. The cross-validation fold size 
is kept at 5 folds for this experiment as well and the 
highest accuracy achieved in this case is 99.46% by the 
LD classifier.

Table 3: Experiment 2 Results.
Classifier Accuracy 

(%)
Precision 

(%)
Specificity 

(%)
Sensitivity 

(%) F1 Score

LR 99.37 99.59 99.59 99.15 99.37
LD 99.46 99.77 99.77 99.16 99.46
QD 95.17 92.86 93.17 97.37 95.06

L-SVM 99.05 99.62 99.61 98.50 99.05
CB-SVM 99.39 99.64 99.64 99.13 99.39
CG-SVM 98.39 99.56 99.55 97.29 98.41
F-KNN 93.00 97.10 96.84 89.75 93.28

CR-KNN 88.99 99.64 99.55 82.15 90.05
W-KNN 93.36 99.06 98.94 88.93 93.72

It can be seen from Table 3. That LD achieved an accuracy 
of 97.46% while CB-SVM achieved an accuracy of 
96.39%. Thus, LD stands out in terms of accuracy in case 
of Experiment 1. Figure 7. Shows the confusion matrix 
for classifier with highest accuracy in case of experiment 
2. which is LD.

Figure 7: Confusion Matrix for LD.

Experiment 3
After implementing the standalone CNN models in the 
previous experiments, the next focus is to combine both 
of their extracted features together to formulate a feature 
fusion model. Table 4 shows the results of experiment 
3 which implements the coalescence of SQN, RSN-101 
and the low level feature learner LBP while keeping rest 
of the parameters same as previous experiments. Same 
cross-validation size is maintained. The highest accuracy 
achieved by using this model combination is 99.53% 
through LD classifier which is better as compared to 
when standalone models are used.

Table 4: Experiment 3 Results.
Classifier Accuracy 

(%)
Precision 

(%)
Specificity 

(%)
Sensitivity 

(%)
F1 

Score
LR 99.46 99.62 99.62 99.31 99.46
LD 99.53 99.78 99.78 99.29 99.53
QD 93.47 88.36 89.44 98.42 93.12

L-SVM 99.01 99.67 99.67 98.37 99.02
CB-SVM 99.32 99.58 99.58 99.06 99.32
CG-SVM 98.23 99.54 99.52 96.99 98.25
F-KNN 93.78 97.24 97.04 90.94 93.99

CR-KNN 91.16 99.34 99.21 85.38 91.83

It can be seen from Table 4. That LD achieved an accuracy 
of 97.53% while LR achieved an accuracy of 96.46%. 
Thus, LD stands out in terms of accuracy in case of 
Experiment 1. Figure 8. Shows the confusion matrix for 
classifier with highest accuracy in case of experiment 
3. That is LD.

Figure 8: Confusion Matrix for LD.

As it is obvious through experiments 1,2 and 3 that the 
features learned by two deep models and a low-level 
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It can be seen from Table 5. That LR achieved an accuracy 
of 97.73% while L-SVM achieved an accuracy of 96.72%. 
Thus, LR stands out in terms of accuracy in case of 

Experiment 1.Figure 9. Shows the confusion matrix for 
classifier with highest accuracy in case of experiment 
4. That is LR.

extractor are classified in various combinations where 
various outcomes are noticed. The fusion based model 
provides the best classification accuracy as compared to 
separate deep models as depicted in experiment 3 but this 
also puts a massive computational burden over the model 
and the used system where training time and prediction 
speed are hugely increased. Therefore, LDA optimization 
algorithm is implemented over the proposed model in the 
next experiment which decreases complexity, training 
time and increases prediction speed.

Experiment 4
Table 5 shows the results of experiment 4 where the fused 
model comprising of two extensive learning frameworks 
SQN and RSN-101 and native LBP is optimized with the 
enactment of feature selector LDA. The final combination 
of features in the fused model are large in number which 
could cause computational complexity in terms of time 
and resources usage which is addressed by LDA that 
selects the most highlighted 

Table 5: Experiment 4 Results.
Classifier Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) F1 Score

LR 99.73 99.76 99.76 99.70 99.73
LD 99.61 99.91 99.91 99.31 99.61
QD 99.68 99.73 99.73 99.62 99.68

L-SVM 99.72 99.79 99.79 99.65 99.72
CB-SVM 68.16 69.68 68.73 67.62 68.63
CG-SVM 99.60 99.91 99.91 99.29 99.60
F-KNN 98.22 98.37 98.37 98.08 98.22

CR-KNN 93.45 95.17 95.00 92.01 93.56
W-KNN 98.32 98.42 98.41 98.23 98.33

Figure 9: Confusion Matrix for LR.

Figure 10: Classifier Training Time Comparison 
Pre-& Post Optimization.
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Figure 11: Overview of Accuracy and Time for Proposed Model Pre-& Post Optimization.

Figure 10. shows the training time comparison of fused 
features from both the deep models without any kind of 
selection and reduction with LDA optimized features. 
It can be seen that the training time has been greatly 
reduced after optimizing the features through LDA while 
as compared to when raw fused features are classified. 
Figure 11. shows a classification overview with respect to 
accuracy and training time for the extracted features prior 

and post optimization. It is quite evident that after the 
feature selection phase is performed using LDA optimizer, 
the proposed model provides almost same accuracy but 
perfectionates itself in terms of time reservation and 
exertion with training times reducing to an insignificant 
percentages post feature optimization. This makes the 
proposed model time efficient to a huge extent while 
maintaining the best accuracy ratio at the same time.

Table 6 shows the comparison of latest works proposed on 
the same dataset with the proposed model. The proposed 

model performed better on the same dataset with proposed 
model in terms of accuracy and time.

Table 6: Accuracy Comparison of other Works and Proposed Work.
Reference Years Methodology Accuracy

Masud et al.[54] 2020 Custom CNN 97.30%
Sinha et al.[55] 2020 ADSN Model based on Deep Conv. Networks 97.47%
Luque et al.[52] 2019 Sequential Residual CNN 98%
Quan et al.[56] 2020 CNN based CapsNet Model 98.7%
Fuhad et al.[57] 2020 Custom 8-layered CNN Model 99.23%

- 2023 Proposed ODMC Model 99.73%

CONCLUSION
Accurate and on-time diagnosis of malaria is a decisive 
factor of any affected patient life. Recent advancements in 
artificial intelligence have provided canonical computer 
vision-based detection methods for image processing 
related problems. An ensemble CNN feature fusion-based 
model ODMC is proposed for the classification of malaria 
blood smears from red blood cells in this paper which 
is based on merger of features obtained from profound 
models RSN-101 and SQN with low level extractor LBP. 
LDA is implanted for model complexity reduction. Finally, 
a number of distinctive up to date classifiers along with 
their kernels are effectuated for classification purpose 
where maximum accuracy of 99.73% is achieved by 

the LR classifier which also maintains an efficient time 
consumption rate. The proposed model excels from 
previous works in terms of accuracy, prediction speed 
and training time exertion.
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