Epstein-Barr Virus Infection in Inflammatory Bowel Disease Patients: Its Relationship with Immunosuppressive Therapy, Liver Dysfunction, and Oncogenic Risk Markers in Kirkuk City, Iraq

Enas Abdulrahman Sattam^{1*}, Lezan Medhat Mohammed², Mohammed Yawoz Nooraldeen³

¹Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Kirkuk, Northern Technical University, Iraq. Email: enas.abdulrahman@ntu.edu.iq

²Medical Technical Institute, Kirkuk, Northern Technical University, Iraq. Center of Technical Research, Northern Technical University, Iraq. Email: lezan md@ntu.edu.iq

³Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Kirkuk, Northern Technical University, Iraq. Center of Technical Research, Northern Technical University, Iraq.

Email: mohammedyawoz@ntu.edu.iq

Abstract

Background: Epstein-Barr Virus (EBV) is the first identified human oncogenic virus and has been increasingly linked to the pathogenesis of inflammatory bowel disease (IBD), particularly in patients undergoing immunosuppressive therapy. The virus is believed to contribute to disease worsening and liver dysfunction in this vulnerable population. **Objective:** This study aimed to assess the prevalence of EBV infection among patients with IBD and to explore its potential association with immunosuppressive treatments and liver enzyme abnormalities. **Methods:** Case-control study was conducted involving 100 IBD patients (56 with ulcerative colitis and 44 with Crohn's disease) and 100 healthy controls. Serum samples were analyzed for EBV VCA IgM, VCA IgG, and EBNA-1 IgG using ELISA. Liver function tests (ALT, AST, TSB, ALP, and GGT) were performed. EBV DNA was detected using real-time polymerase chain reaction (PCR). **Results:** EBV seropositivity was significantly higher in IBD patients (UC: 76.7%; CD: 70.4%) compared to controls (6%) (p < 0.0001). EBV DNA was detected in 22% of IBD patients. The highest rates of positivity were observed among those receiving azathioprine (UC: 94%, CD: 90%). Abnormal liver enzyme levels were strongly associated with EBV positivity, particularly elevated ALT, AST, and TSB in both UC and CD groups. **Conclusion:** These findings suggest a possible link between EBV infection, immunosuppressive therapy, and hepatic dysfunction in IBD patients. Screening for EBV before initiating immunosuppressive treatment may be beneficial in managing potential complications.

Keywords: Epstein-Barr Virus, Immunosuppressive Therapy, Inflammatory Bowel Disease, Liver Enzymes, Real-time PCR.

NTRODUCTION

Inflammatory bowel disease (IBD) is a chronic, immune-mediated condition that includes two main clinical entities: Crohn's disease (CD), which can affect any part of the gastrointestinal tract, and ulcerative colitis (UC), which is limited to the colonic mucosa. Despite ongoing research, the exact etiology of IBD remains unclear, but it is believed to arise from complex interactions among genetic susceptibility, environmental triggers, intestinal microbiota, and dysregulated immune responses. [1-4] Liver involvement is a well-documented extraintestinal manifestation of IBD, with elevated liver enzymes (ELE) reported in up to one-third of patients. [2] Several

Access This Article Online

Quick Response Code:

Website:

www.jnsbm.org

DOI:

https://doi.org/10.5281/zenodo.17279824

factors may contribute to hepatic dysfunction in IBD, including primary sclerosing cholangitis, drug-induced hepatotoxicity, and viral infections. Among these, herpesviruses—particularly Epstein-Barr virus (EBV)—have gained attention for their potential role in immune modulation and liver injury.^[5,6]

EBV is a ubiquitous gamma herpesvirus that infects

Address for Correspondence: Department of Medical Laboratory
Techniques, College of Health and Medical Techniques, Kirkuk,
Northern Technical University, Iraq
Email: enas.abdulrahman@ntu.edu.iq

Submitted: 20th August, 2025 Received: 26th September, 2025 Accepted: 03rd October, 2025 Published: 05th October, 2025

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to Cite This Article: Sattam E A, Mohammed L M, Nooraldeen M Y. Epstein-Barr Virus Infection in Inflammatory Bowel Disease Patients: Its Relationship with Immunosuppressive Therapy, Liver Dysfunction, and Oncogenic Risk Markers in Kirkuk City, Iraq. J Nat Sc Biol Med 2025;16(3):55-62

over 90% of the global population. While primary infection is usually asymptomatic or presents as infectious mononucleosis, EBV can persist in a latent state within B cells and reactivate under conditions of immunosuppression or chronic inflammation.^[7,8] Such reactivation has been associated with hepatitis ranging from mild transaminase elevation to fulminant liver failure, particularly in immunocompromised hosts.

Furthermore, EBV has been proposed as a potential cofactor in the development of hepatocellular carcinoma (HCC), especially in patients with chronic liver disease or co-infection with hepatitis B or C viruses. [9] In the context of IBD, EBV reactivation may exacerbate mucosal inflammation and contribute to disease complications. Elevated liver enzymes in EBV infection may reflect either hepatocellular or cholestatic patterns, including increased levels of ALT, AST, ALP, and GGT, and can occasionally progress to severe outcomes such as cholestatic hepatitis or liver failure. [10-12]

Given the growing use of immunosuppressive therapies in IBD management, especially thiopurines and biologic agents, it is critical to explore the implications of latent viral reactivation. In particular, the interaction between EBV and these therapies may influence disease course and hepatic outcomes. However, data on EBV prevalence and its clinical consequences in IBD patients from the Middle East are limited.

This study, therefore, aims to investigate the prevalence of EBV infection in patients with IBD and assess its possible association with immunosuppressive treatment and hepatic dysfunction in a cohort from Kirkuk, Iraq.

MATERIALS AND METHODS Study Design

This study included 100 patients diagnosed with inflammatory bowel disease (IBD), comprising 56 with ulcerative colitis (UC) and 44 with Crohn's disease (CD). All participants were recruited from Azadi Teaching Hospital in Kirkuk, Iraq, between September and November 2024. A comparison group of 100 healthy individuals matched for age and sex wPatient Selection and Inclusion Criteria

Patient Selection and Inclusion Criteria

All patients were clinically and endoscopically confirmed cases of IBD, aged between 8 and 62 years, and all were under active treatment with at least one of the following: aminosalicylates (5-ASA), immunosuppressive agents (azathioprine or methotrexate), or biologic therapies (infliximab or adalimumab). None had received antiviral therapy in the previous six months. Written informed consent was obtained from all participants or their legal guardians.

Exclusion Criteria

Individuals were excluded if they had any of the following: coexisting chronic liver diseases (such as hepatitis A, B, or C; autoimmune hepatitis; or alcoholic liver disease), known immunodeficiency (e.g., HIV infection), prior organ transplantation, or current use of antiviral agents.

Patients with incomplete clinical records or who declined to participate were also excluded.

Sample Collection and Laboratory Procedures

Five milliliters of peripheral blood were drawn from each participant. Samples were centrifuged to separate serum, which was then stored at -80°C for subsequent analyses.

Serological Testing

EBV-specific antibodies, including viral capsid antigen (VCA) IgM and IgG, and Epstein-Barr nuclear antigen-1 (EBNA-1) IgG, were detected using a commercial ELISA kit (Sunlong Biotech, China), following the manufacturer's protocol.

Liver Function Tests (LFTs)

Biochemical parameters were measured using a standard clinical chemistry analyzer and Biolab reagent kits (France), assessing levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total serum bilirubin (TSB), alkaline phosphatase (ALP), and gammaglutamyl transferase (GGT).

Molecular Detection of EBV DNA

DNA was extracted from blood samples using the QIAamp DNA Mini Kit (Qiagen, Germany). EBV DNA was amplified using a commercial real-time PCR kit (DNA-Technology Research & Production LLC, Russia), which targets a conserved sequence in the EBNA-1 gene. Amplification was monitored using fluorescent dyes and a probe specific to the target sequence, allowing real-time quantification without reopening the reaction tubes.

Statistical Analysis

Data were analyzed using SPSS software. Chi-square tests were employed to assess associations between categorical variables. A p-value of less than 0.05 was considered statistically significant.

Ethical Considerations

Ethical approval was approved by the Director of Health in Kirkuk. Participant information was collected in accordance with ethical guidelines, and the study protocol, including data handling and On Septembert 10, 2024, the consent form was examined and accepted by the local ethics committee (698).

Study Samples and Methods

Five milliliters of blood were extracted from every individual. An automated pipette was used to separate the serum from the packed red blood cells (RBCs) after the blood sample had been allowed to coagulate and centrifuged for 15 minutes at 3,000 rpm. Following that, the serum was kept in sterile Eppendorf tubes at -80°C for ensuing genetic and serological examinations. Following the manufacturer's instructions (Sunlong, China), Epstein-Barr virus (EBV) VCA IgM, IgG, and EBNA-1 IgG antibodies were detected in all serum samples using enzyme-linked immunosorbent assays (ELISA), with

optical density (OD) assessed at 450 nm. Furthermore, the levels of liver enzymes such as gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), total serum bilirubin (TSB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured using (Biolab kit/France)

DNA extraction for genetic detection of EBV

For viral DNA isolation, the procedure was extracted using the QIAamp DNA Mini Kit (Qiagen/Germany).

Real-time PCR for EBV Identification

EBV DNA was found using (DNA-Technology Research & Production LLC, Russia Kit) by real-time polymerase chain reaction (RT-PCR), which amplifies a conserved sequence in the single-copy gene that codes for Epstein-Barr nuclear antigen 1 (EBNA-1). Fluorescent dyes were employed in real-time PCR to track the amplification process. A dye linked to a probe, which binds precisely to the amplified target sequence, is used in thermoselective amplification. Because fluorescence intensity was evaluated in real-time, the accumulation of the amplified product could be continually detected without the need to reopen reaction tubes after each cycle.

The amplification curve shown in Figure 1 was directly generated from patient samples processed in our laboratory during the current study.

Calculation of the PCR value

The instrument software analyzes the data based on the fluorescence curve crossing the threshold line.

Editorial Assistance

To improve the academic clarity of this manuscript, the authors used ChatGPT (OpenAI, 2025) to assist with language editing. The tool was only used to enhance the readability and grammar of the text and was not involved in the scientific design, data analysis, or interpretation of results

RESULT

Table (I) shows The prevalence of EBV infection was significantly higher among patients with IBD compared to the control group. Specifically, 76.7% of patients with UC and 70.4% of those with CD tested positive for EBV serologically, whereas only 6% of the control group showed EBV positivity. This difference was statistically significant (p < 0.0001), indicating a strong association between EBV infection and IBD status.

Table 1: Prevalence of EBV Ab among Ulcerative Colitis (UC), Crohn's Disease (CD) Patients and Control Group,

Idalo II I I I I I I I I I I I I I I I I I	or EDT AND annong Groon	, , , , , , , , , , , , , , , , , , ,	o bioodoo (ob) i diio	into ana oontroi aroapi
Group	EBV Positive	EBV Negative	Total	p-value
UC Patients	43 (76.7%)	13 (23.3%)	56	
CD Patients	31 (70.4%)	13 (29.5%)	44	< 0.0001
Controls	6 (6.0%)	94 (94.0%)	100	

Table (2) shows, Among patients with ulcerative colitis (UC), 5.3% tested positive for VCA IgM, 12.5% for VCA IgG, and 58.9% for EBNA-1 IgG. In Crohn's disease (CD) patients, the corresponding rates were 2.3% for VCA IgM, 6.8% for VCA IgG, and 61.3% for EBNA-1 IgG. In contrast, none of the healthy controls tested positive for VCA IgM or VCA IgG, and only 6% were positive for EBNA-1 IgG. Statistically significant differences were observed for VCA IgG (p = 0.002) and EBNA-1 IgG (p < 0.0001), but not for VCA IgM (p = 0.071). These findings suggest a significantly higher seroprevalence of past EBV exposure among IBD patients compared to healthy individuals.

Table 2: Prevalence of EBV Antibodies (VCA IgM, VCA IgG, EBNA-1 IgG) among UC, CD, and Control Groups.

Anti-EBV Ab	UC Patients		CD Patients	Control	p-value
AIIII-EDV AD	N=56	N=44	N=100	Group	p-value
Anti-VCA	IgM +	3(5.3%)	1(2.3%)	0(0%)	0.071
	IgM -	53 (95%)	43(98%)	100(100%)	0.071
Anti-VCA	IgG+	7 (12.5%)	3(6.8%)	0(0%)	0.002**
	IgG -	49 (87%)	41 (93%)	100(100%)	0.002
Anti-EBNA-1	IgG+	33(58.9%)	27(61.3%)	6 (6%) 94(94%)	<0.0001***
	IgG -	23 (41%)	17(39%)	94(94%)	\0.0001****

^{*}All patients who tested positive for VCA IgM also have VCA IgG and EBNA-1 IgG.

^{*}VCA: viral capsid Antigen, EBNA-1: Epstein-Barr Nuclear Antigen 1

Table 3: Corre	Table 3: Correlation between EBV Serology Result and Treatment in UC Patients.								
Deve wood	VCA	VCA IgM		VCA IgG		EBNA-1 lgG		Total of	
Drug used —	+VE	-VE	+VE	-VE	+ VE	-VE	EBV+	Patient	
AZA	1(6.2%)	15(94%)	2(12.5%)	14(87%)	12(75%)	4(25%)	15(94%)	16	
MTX	0(0%)	4(100%)	0(0%)	4(100%)	2(50%)	2(50%)	2(50%)	4	
5-ASA	0(0%)	7(100%)	0(0%)	7(100%)	2(29%)	5(71%)	2(29%)	7	
IFX	1(9%)	10(91%)	4(27%)	7(73%)	5(55%)	6(45%)	10(91%)	11	
AdA	0(0%)	5(100%)	0(0%)	5(100%)	3(60%)	2(40%)	3(60%)	5	
IFX+AZA	1(7.6%)	12(92%)	1(7.6%)	12(92%)	9(69%)	4(31%)	11(85%)	13	
P-value	0.9	927	0.	141	0.3	316		-	

5-ASA: Aminosalicylates, AZA: Azathioprine, MTX: Methotrexate, IFX: Inflixima, AdA: Adalinumab

Table (3) shows, Among ulcerative colitis patients, EBV seropositivity was most prevalent in those receiving

azathioprine (94%) and infliximab (91%), followed closely by combination therapy with infliximab and azathioprine

^{*} Abbreviations: VCA: Viral Capsid Antigen; EBNA-1: Epstein-Barr Nuclear Antigen 1; UC: Ulcerative Colitis; CD: Crohn's Disease.

^{*}Statistical test: p < 0.05 considered significant.

(85%). Lower rates were observed in patients treated with adalimumab (60%), methotrexate (50%), and 5-ASA alone (29%). Despite these numerical differences, the associations between EBV seropositivity and treatment type did not reach statistical significance for any antibody marker (VCA IgM p = 0.927; VCA IgG p = 0.141; EBNA-1 IgG p = 0.316).

Table (4) shows, in patients with CD, the highest EBV

seropositivity rates were observed among those receiving azathioprine (90%), infliximab (89%), and combination therapy with IFX and AZA (83%). In contrast, lower positivity rates were seen in patients on adalimumab (67%), 5-ASA (50%) and methotrexate (17%). Despite these differences, none of the associations reached statistical significance. The p-values for VCA IgM, VCA IgG, and EBNA-1 IgG were 0.262, 0.7422, and 0.146, respectively.

Table 4: Corre	Table 4: Correlation between EBV Serology Result and Treatment in CD Patients.							
Tunnimoni	VCA	VCA IgM		VCA IgG		EBNA-1 IgG		Total of
Treatment —	+VE	-VE	+VE	-VE	+ VE	-VE	EBV+	Patient
AZA	0(0%)	10(100%)	1(10%)	9(90%)	8(80%)	2(20%)	9(90%)	10
MTX	0(0%)	6(100%)	0(0%)	6(100%)	1(17%)	5(83%)	1(17%)	6
5-ASA	0(0%)	4(100%)	0(0%)	4(100%)	2(50%)	2(50%)	2(50%)	4
IFX	0(9%)	9(100%)	1(11%)	8(89%)	7(78%)	2(22%)	8(89%)	9
AdA	0(0%)	9(100%)	0(0%)	9(100%)	6(67%)	2(33%)	6(67%)	9
IFX+AZA	1(17%)	5(83%)	1(17%)	5(17%)	3(50%)	3(50%)	5(83%)	6
P-value	0	262	0.	742	0.1	146		_

5-ASA: Aminosalicylates, AZA: Azathioprine, MTX: Methotrexate, IFX: Inflixima, AdA: Adalinumab

Table (5) real-time PCR-based detection of EBV DNA revealed that 22% of the total IBD patients tested positive for the virus, while 78% were negative. Among UC

patients, the detection rate was 23%, slightly higher than the 20% observed in CD patients. However, this difference was not statistically significant (p = 0.93).

Table 5: Molecular Detection of EBV among Inflammatory Bowel Disease Patients.						
Study Group -	PCR Result Total of Patients P Value		P Value			
Study Group —	+VE	-VE	— Iotal of Patients	r value		
UC patients	13 (23%)	43 (77%)	56 (100%)	0.93		
CD patients	9 (20%)	35 (80%)	44 (100%)	0.93		
Total	22 (22%)	78 (78%)	100 (100%)	-		

^{*}PCR: polymerase chain reaction

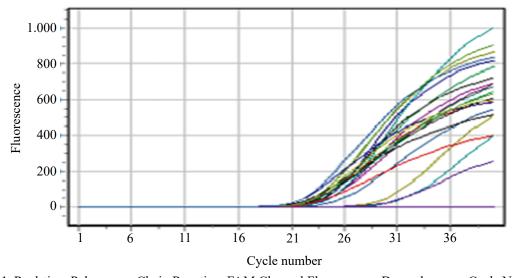


Figure 1: Real-time Polymerase Chain Reaction, FAM Channel Fluorescence Dependence on Cycle Number.

Table (6) A higher frequency of EBV DNA positivity was observed among IBD patients receiving azathioprine alone (38%) and those on combined azathioprine and infliximab therapy (37%), compared to lower rates in IFX (15%) and AdA (14%) monotherapy groups. In terms of disease duration, 24% of patients with more than one

year of illness tested PCR-positive versus 18% of those with shorter disease duration. Furthermore, EBV DNA was detected in 26% of patients who had experienced more than five relapses, compared to 19% in those with fewer than five

Table 6: Distribution of EBV (PCR+) among IBD Patients based on to Type of Treatment, Disease Duration, and Number of Relapses.

Clinical and Therapeutic Variables		PCR I	Total of Dationto	
		+ VE	-VE	— Total of Patients
	< 1 years	5 (18%)	23 (82%)	28 (100%)
Disease duration	> 1 years	17 (24%)	55 (76%)	72 (100%)
	Total	22 (22%)	78 (78%)	100 (100%)
	< 5 relapses	3 (19%)	13 (81%)	16 (100%)
No. of Relapses	> 5 relapses	19 (26%)	55 (74%)	74 (100%)
•	Total	22 (24%)	68 (76%)	90 (100)
	AZA	10 (38%)	16 (62%)	26 (100%)
	AZA+IFX	7 (37%)	12 (63%)	19 (100%)
Type of treatment	IFX	3 (15%)	17 (85%)	20 (100%)
	AdA	2 (14%)	12 (86%)	14 (100%)
	Total	22 (28%)	57 (72%)	79 (100%)

Table (7) Among UC patients with abnormal liver function, EBV infection was detected in 90% of those who had simultaneous elevation of ALT, AST, and TSB, and in all patients (100%) who had elevation across all measured liver enzymes. Those with elevated ALP and

GGT showed a slightly lower EBV positivity rate of 75%. Despite these apparent trends, the association between EBV infection and liver enzyme abnormalities was not statistically significant (p = 0.629).

Table 7: Association of Abnormal Liver Enzyme Elevation with EBV Infection in UC Patients.					
Abnormal Liver Enzyme Elevation	EBV+VE	EBV-VE	Total	P-value	
Elevated AST, ALT, TSB	19 (90%)	2 (10%)	21 (100%)		
Elevated ALP, GGT	3 (75%)	1 (25%)	4 (100%)	0.629	
Elevated all liver enzyme	5 (100%)	0 (0%)	5 (100%)	0.629	
Total	27 (90%)	3 (10%)	30 (100%)		

*AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; TSB: Total serum bilirubin; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl transferase.

Table (8) In Crohn's disease patients, EBV infection was detected in 90% of those with elevated AST, ALT, and TSB, and in 80% of patients who had elevation across all measured liver enzymes. A lower EBV positivity rate (60%)

was noted in patients with isolated ALP and GGT elevation. Although these findings suggest a possible trend linking EBV infection with hepatocellular injury, the association did not reach statistical significance (p = 0.507).

Table 8: Association between Abnormal Liver Enzyme Elevation and EBV Infection in CD Patients.						
Abnormal Liver Enzyme Elevation	EBV+VE	EBV-VE	Total of Patients	P-value		
Elevated AST, ALT, TSB	9 (90%)	1 (10%)	10 (100%)			
Elevated ALP, GGT	3 (60%)	2 (40%)	5 (100%)	0.507		
Elevated all liver enzymes	4 (80%)	1 (20%)	5 (100%)	0.507		
Total	16 (80%)	4 (20%)	20 (100%)			

DISCUSSION

Epstein–Barr virus (EBV) has been implicated in the pathogenesis of various malignancies. Among its latent proteins, EBNA-1 is consistently expressed across all EBV-associated tumors and is considered a potential therapeutic target, particularly in immunocompromised hosts. [13,14] This highlights the importance of vigilant EBV monitoring in inflammatory bowel disease (IBD) patients, especially those receiving immunosuppressive therapy.

In the present study, the seroprevalence of EBV was investigated among IBD patients. Notably, VCA IgM positivity was detected in 4% of IBD cases, suggestive of either a primary acute infection or viral reactivation, while none of the controls tested positive. These findings are in agreement with the data reported by Ghazi *et al.*^[15], who documented VCA IgM positivity in 10% of ulcerative colitis (UC) cases,

6.67% of Crohn's disease (CD) patients, and 0% of controls. The observed discrepancy in IgM levels between UC and CD patients may be attributed to distinct immunological mechanisms underlying each condition. CD is typically associated with a Th1/Th17-dominant immune response that confers stronger antiviral activity, while UC exhibits a Th2-skewed profile, which may be less efficient in suppressing viral replication. [16-18]

Serological analysis further revealed that 10% of patients were VCA IgG positive, while 60% exhibited simultaneous positivity for EBNA-1 and VCA IgG. According to the serological interpretation framework outlined by Ekşi *et al.*^[19], the detection of all three antibodies (VCA IgM, IgG, and EBNA-1 IgG) is indicative of either viral reactivation or a late primary infection. The presence of VCA IgG alone may correspond to past or acute EBV infection, whereas the

co-detection of EBNA-1 IgG and VCA IgG typically signifies past infection and long-term immunological memory. The statistically significant elevation of EBNA-1 + VCA IgG positivity among IBD patients compared to controls (6%) underscores the persistent nature of EBV infection in the context of IBD.

These findings are consistent with Baran *et al.*^[20], who identified EBNA-1 IgG and VCA IgG positivity in 74% and 67% of pediatric IBD cases, respectively, despite a younger cohort (mean age: 11 years). Rodríguez-Lago *et al.*^[21] reported an even higher prevalence, with 97% of adult IBD patients testing positive for both antibodies. Furthermore, 94% of cases exhibited simultaneous VCA and EBNA-1 IgG positivity, reinforcing the notion of long-term viral persistence in the IBD population.

Due to the known limitations of serological testing in immunocompromised and pediatric patients, EBV DNA was assessed through real-time PCR as a complementary diagnostic approach. [22,23] EBV DNA was identified in 23% of UC and 20% of CD patients via real-time PCR, suggesting a role for the virus in a subset of IBD cases. This finding corroborates the observations of Kornitzer *et al.*[24], who reported EBV viremia in pediatric IBD cases, particularly after initiation of immunosuppressive agents.

Xu et al.^[25] emphasized that chronic active EBV (CAEBV) infection can mimic IBD, with overlapping gastrointestinal manifestations and elevated blood EBV DNA levels. These findings underscore the clinical utility of quantitative viral load assessment to differentiate CAEBV from EBV-associated IBD. Additionally, the immunomodulatory impact of EBV in IBD patients under immunosuppressive treatment has been noted, with several studies demonstrating associations between EBV seropositivity and therapies such as thiopurines and anti-TNF agents.^[26,27]

Immunosuppressive regimens, particularly azathioprine (AZA), have been implicated in increasing the risk of EBV reactivation and virus-associated complications. In this study, EBV seropositivity was observed in 94% of UC and 90% of CD patients receiving AZA monotherapy. Combination therapy with AZA and infliximab (IFX) was associated with similarly high positivity rates (85% in UC and 83% in CD). Notably, IgM positivity—suggestive of active or reactivating infection—was detected in 18%, 12.5%, and 7.6% of UC patients receiving IFX, AZA+IFX, and AZA, respectively, and in 17% of CD patients treated with AZA+IFX.

PCR testing supported these findings, revealing EBV DNA in 38% and 37% of patients on AZA and AZA+IFX, respectively. Comparatively lower positivity rates were recorded among IFX- (15%) and adalimumab (AdA)-treated patients (14%). These observations are aligned with Espinheira *et al.*^[28], who found that 76% of pediatric IBD patients had previous EBV exposure, and with Bachmann *et al.*^[29], who reported EBV seroconversion during thiopurine therapy.

The immunosuppressive effect of AZA on natural killer (NK) cells may reduce viral surveillance and contribute to severe outcomes.^[30] Honkila *et al.*^[31] described a case of life-threatening EBV infection in a pediatric UC patient on

AZA, which resolved following AZA discontinuation and NK cell recovery. Similarly, Zhang *et al.*^[32] and Levhar *et al.*^[33] reported IFX-associated pulmonary EBV infection and B-cell proliferation with increased EBV DNA, respectively. Kato *et al.*^[34] documented a case of hemophagocytic syndrome in an AdA-treated patient, emphasizing the potential severity of EBV reactivation during biologic therapy.

Although 5-ASA and methotrexate (MTX) demonstrated minimal influence on EBV markers in the present study, other reports suggest that mesalazine may modulate immune responses and warrant further investigation. The current findings substantiate recommendations for baseline EBV screening prior to initiating thiopurines or biologic agents. The addition, EBV DNA positivity was more frequently observed among patients with prolonged disease duration (>1 year: 24%) and higher relapse frequency (>5 relapses: 26%). These trends are supported by Nunez Ortiz *et al.* The linked mucosal EBV presence to heightened disease activity, increased endoscopic and histological severity, and elevated hospitalization rates. Similarly, Wang *et al.* Below prevalence increased with disease severity, ranging from 53.93% in mild to 94.9% in severe cases.

Histological inflammation was also significantly more pronounced among EBV-positive individuals (52%) compared to EBV-negative counterparts (17.2%) (p=0.007), as demonstrated by Núñez Ortiz *et al.*^[39]. Zhou *et al.*^[40] found a positive correlation between EBER-1 cell density and mucosal inflammation, identifying AZA use and advanced age as risk factors for EBV infection.

The hepatotropic potential of EBV is well documented, with manifestations ranging from transient enzyme elevations to fulminant hepatitis and hepatobiliary neoplasms.^[10,11] Given that one-third of IBD patients exhibit elevated liver enzymes,^[2] the current study evaluated the relationship between EBV infection and liver dysfunction, excluding cases positive for hepatitis A, B, or C viruses.

Among patients with elevated ALT, AST, and TSB, EBV was detected in 90% of both UC and CD cases. Moreover, EBV positivity was recorded in 100% of UC and 80% of CD patients with elevation in all measured liver enzymes. In contrast, only 10% (UC) and 20% (CD) of enzyme-elevated patients were EBV-negative. These findings support a link between EBV infection and hepatocellular injury in IBD. Adelodun et al.[41] described a case of EBV-induced hepatitis with ALT and AST elevation, consistent with our observations. Persistent inflammation in IBD may compromise immune control of latent EBV, contributing to hepatic dysfunction.^[42] While cholestatic patterns (ALP and GGT elevation) were less strongly associated with EBV, earlier studies have linked the virus to bile duct inflammation and cholestatic hepatitis. [12,43] The clinical relevance of these findings lies in avoiding misdiagnosis of EBV-related hepatitis as autoimmune hepatitis, which may lead to unnecessary immunosuppression and further liver injury.[42] Singh et al.[44] emphasized that EBV hepatitis may lack classic symptoms, underscoring the need to include EBV in the differential diagnosis of liver dysfunction, particularly in immunosuppressed IBD patients.

CONCLUSION

This study highlights the potential involvement of EBV in the immunopathogenesis of IBD, particularly among patients receiving immunosuppressive therapies. EBV seropositivity and viremia were more prevalent in patients on thiopurines and anti-TNF agents, in those with prolonged disease duration, frequent relapses, and elevated liver enzymes. Given the virus's association with disease activity, hepatic dysfunction, and possibly malignancy, these findings support the incorporation of EBV screening into routine clinical assessment of IBD patients, especially prior to initiation of immunosuppressive therapy. Early detection and tailored monitoring may help prevent EBV-related complications and improve long-term clinical outcomes.

REFERENCES

- Chang JT. Pathophysiology of Inflammatory Bowel Diseases. N Engl J Med. 2020; 383(27): 2652-64. doi: https://doi.org/10.1056/nejmra2002697.
- Cheng YW, McLean R, Sewell JL, Huang CY, Khalili M. Inflammatory bowel disease type influences development of elevated liver enzymes. JGH Open. 2022; 6(12): 846-53. doi: https://doi.org/10.1002/jgh3.12831.
- Deshmukh R, Kumari S, Harwansh RK. Inflammatory Bowel Disease: A Snapshot of Current Knowledge. Research Journal of Pharmacy and Technology. 2020; 13(2): 956-62. doi: https://doi.org/10.5958/0974-360X.2020.00180.8.
- Jairath V, Feagan BG. Global burden of inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2020; 5(1): 2-3. doi: https://doi.org/10.1016/s2468-1253(19)30358-9.
- Ihsan EA, Mohammed LM, Ali WM. Prevalence of Epstein-Barr virus among hemodialysis patients in Kirkuk city. NTU Journal of Pure Sciences. 2023; 2(4): 17-22. doi: https://doi.org/10.56286/ntujps.v2i4.574.
- Yousif SW, Taqa GA, Taha AM. Anti-inflammatory and Protective Effects of Melatonin on Rats Exposed to Anticancer Drugs. NTU Journal of Pure Sciences. 2023; 2(2): 6-14. doi: https://doi.org/10.56286/ntujps. v2i2.321.
- Noraldeen ZM, Noraldeen MY. Comparison between Rapid Test and ELISA in Cytomegalovirus Detection among Pregnant Women in Kirkuk City. NTU Journal of Pure Sciences. 2024; 3(1): 1-7. doi: https://doi.org/10.56286/ ntujps.v3i1.572.
- Mohammed LM, Risan FA, Mohammed NS. Estimation of Interleukin-10 and Soluble HLA-G in Aborted Women Having Herpes Simplex Virus-2 Infection. Mal J Med Health Sci. 2022; 18(Suppl 11): 23-6. Available from: https://medic.upm.edu.my/upload/ dokumen/202209300939195 1170.pdf.
- Gomaa HHA, Mohammed EMAEA, Attia FM, Saleh RM. Detection of Epstein Barr Virus in Hepatocellular Carcinoma Patients in Suez Canal Region: A Case-Control Study. The Egyptian Journal of Hospital Medicine. 2022; 89(2): 7769-74. doi: https://doi.org/10.21608/ ejhm.2022.277142.

- Xu JH, Yu YY, Xu XY. [Clinical features of Epstein-Barr virus infection associated to liver injury in adolescents and adults]. Zhonghua Gan Zang Bing Za Zhi. 2021; 29(10): 915-18. doi: https://doi.org/10.3760/cma.j.cn501113-20210902-00445.
- Sheth N, Reyes JVM, Burgos M, Seen T, Malik F, Patel B. S2484 Epstein-Barr Virus-Associated Fulminant Liver Failure: A Case Report. Am J Gastroenterol. 2020; 115: S1312. doi: https://doi.org/10.14309/01. ajg.0000711984.87962.8f.
- Da Cunha T, Mago S, Bath RK. Epstein-Barr Virus Reactivation Causing Cholestatic Hepatitis. Cureus. 2022; 14(4): e24552. doi: https://doi.org/10.7759/cureus.24552.
- Wilson JB, Manet E, Gruffat H, Busson P, Blondel M, Fahraeus R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel). 2018; 10(4): 109. doi: https://doi.org/10.3390/cancers10040109.
- Boudreault S, Armero VES, Scott MS, Perreault JP, Bisaillon M. The Epstein-Barr virus EBNA1 protein modulates the alternative splicing of cellular genes. Virol J. 2019; 16(1): 29. doi: https://doi.org/10.1186/ s12985-019-1137-5.
- Ghazi HF, Alubaidi GT, Fahad HM. Sero-Prevalence of Epstein-Barr Virus in Iraqi Inflammatory Bowel Disease. Wiad Lek. 2022; 75(8 pt 2): 1979-84. doi: https://doi. org/10.36740/wlek202208207.
- Feng BS, Wu YJ, Zeng XH, et al. Bcl2L12 mediates effects of protease-activated receptor-2 on the pathogenesis of Th2-dominated responses of patients with ulcerative colitis. Arch Biochem Biophys. 2018; 657: 8-14. doi: https://doi.org/10.1016/j.abb.2018.09.003.
- Otake-Kasamoto Y, Kayama H, Kishikawa T, et al. Lysophosphatidylserines derived from microbiota in Crohn's disease elicit pathological Th1 response. J Exp Med. 2022; 219(7): e20211291. doi: https://doi.org/10.1084/ jem.20211291.
- Hokello J, Tyagi K, Owor RO, et al. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life (Basel). 2024; 14(1): 104. doi: https://doi.org/10.3390/life14010104.
- Ekşi F, Karslıgil T, Erinmez M, Pehlivan M. Investigation of Epstein-Barr Virus antibodies by ELISA and IFA methods. J Exp Clin Med (Samsun). 2022; 39(1): 66-70. doi: https://doi.org/10.52142/omujecm.39.1.14.
- Baran M, Aksoy B, Vardı K, Appak YÇ, Öncel EK, Çiftdoğan DY. The Frequency and Importance of Cytomegalovirus and Epstein-Barr Virus Infections in Children with Inflammatory Bowel Disease: Single Center Experience. J Pediatr Inf. 2018; 12(4): e140-e46. doi: https://doi.org/10.5578/ced.201842.
- Rodríguez-Lago I, Merino O, López de Goicoechea MJ, et al. Immunosuppression for inflammatory bowel disease does not influence Epstein-Barr viral load in the short-term. Gastroenterol Hepatol. 2019; 42(9): 542-47. doi: https://doi.org/10.1016/j.gastrohep.2019.03.016.

- 22. Schechter S, Lamps L. Epstein-Barr Virus Hepatitis: A Review of Clinicopathologic Features and Differential Diagnosis. Arch Pathol Lab Med. 2018; 142(10): 1191-95. doi: https://doi.org/10.5858/arpa.2018-0208-ra.
- Midoen YH, Suryandari DA, Yunaini L, Susworo R, Auerkari EI, Freisleben HJ. Epstein-Barr virus nuclear antigen-1 is useful as therapeutic efficacy marker in serum but not in saliva of nasopharyngeal cancer patients who underwent radiotherapy. Ecancermedicalscience. 2021; 15: 1254. doi: https://doi.org/10.3332/ecancer.2021.1254.
- 24. Kornitzer GA, Rosenstein M, Groleau V, et al. A247 Viral Load of Epstein-Barr Virus in Pediatric Patients with New Onset IBD at Diagnosis and on Follow Up: An Observational Study. J Can Assoc Gastroenterol. 2020; 3(Suppl 1): 124-25. doi: https://doi.org/10.1093/jcag/gwz047.106.
- Xu W, Jiang X, Chen J, et al. Chronic active Epstein-Barr virus infection involving gastrointestinal tract mimicking inflammatory bowel disease. BMC Gastroenterol. 2020; 20(1): 257. doi: https://doi.org/10.1186/s12876-020-01395-9.
- 26. Hu TT, Jiang XY, Guan M. [Analysis of clinical characteristics and risk factors for recurrence of combined EB virus infection in patients with inflammatory bowel disease treated with biological agents]. Zhonghua Yu Fang Yi Xue Za Zhi. 2024; 58(11): 1711-19. doi: https://doi.org/10.3760/cma.j.cn112150-20240620-00486.
- Wu S, He C, Tang TY, Li YQ. A review on co-existent Epstein-Barr virus-induced complications in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2019; 31(9): 1085-91. doi: https://doi.org/10.1097/meg.0000000000001474.
- Espinheira MDC, Pais IP, Afonso I, Ferreira J, Trindade E, Amil-Dias J. Epstein-Barr Virus Infection and Thiopurine Therapy in a Pediatric Population with Inflammatory Bowel Disease. GE Port J Gastroenterol. 2020; 27(5): 318-23. doi: https://doi.org/10.1159/000507199.
- Bachmann J, Le Thi G, Brückner A, et al. Epstein-Barr Virus Prevalence at Diagnosis and Seroconversion during Follow-Up in Pediatric Inflammatory Bowel Disease. J Clin Med. 2021; 10(21): 5187. doi: https://doi.org/10.3390/jcm10215187.
- 30. Ingelfinger F, Sparano C, Bamert D, et al. Azathioprine therapy induces selective NK cell depletion and IFN-γ deficiency predisposing to herpesvirus reactivation. J Allergy Clin Immunol. 2023; 151(1): 280-86.e2. doi: https://doi.org/10.1016/j.jaci.2022.09.010.
- Honkila M, Niinimäki R, Taskinen M, et al. A nearly fatal primary Epstein-Barr virus infection associated with low NK-cell counts in a patient receiving azathioprine: a case report and review of literature. BMC Infect Dis. 2019; 19(1): 404. doi: https://doi.org/10.1186/s12879-019-4022-3.
- 32. Zhang Y, Tian F, Li H. Pulmonary Infection Due to Reactivation of Latent Epstein-Barr Virus in a Patient With Crohn's Disease Treated With Infliximab. Inflamm Bowel Dis. 2022; 28(6): e80-e81. doi: https://doi.org/10.1093/ibd/izab304.
- Levhar N, Ungar B, Kopylov U, et al. Propagation of EBV-driven Lymphomatous Transformation of Peripheral Blood B Cells by Immunomodulators and Biologics Used in the Treatment of Inflammatory Bowel Disease. Inflamm Bowel Dis. 2020; 26(9): 1330-39. doi: https://doi.org/10.1093/ibd/izaa065.

- Kato M, Lee S, Morishita T, et al. Hemophagocytic syndrome due to Epstein-Barr virus and cytomegalovirus coinfection in a patient on adalimumab. J Infect Chemother. 2022; 28(6): 823-27. doi: https://doi.org/10.1016/j. jiac.2022.01.018.
- Andreu-Ballester JC, Gil-Borrás R, García-Ballesteros C, et al. Epstein-Barr virus is related with 5-aminosalicylic acid, tonsillectomy, and CD19(+) cells in Crohn's disease. World J Gastroenterol. 2015; 21(15): 4666-72. doi: https://doi.org/10.3748/wjg.v21.i15.4666.
- Sinit RB, Horan KL, Dorer RK, Aboulafia DM. Epstein-Barr Virus-Positive Mucocutaneous Ulcer: Case Report and Review of the First 100 Published Cases. Clin Lymphoma Myeloma Leuk. 2019; 19(2): e81-e92. doi: https://doi.org/10.1016/j.clml.2018.10.003.
- Nunez Ortiz A, Trigo Salado C, De la Cruz Ramírez MD, Márquez Galán JL, Herrera Justiniano JM, Leo Carnerero E. P322 Impact of the presence of Epstein–Barr virus in intestinal mucosa of inflammatory bowel disease patients. J Crohns Colitis. 2020; 14(Suppl 1): S314-S15. doi: https://doi.org/10.1093/ecco-jcc/jjz203.451.
- Wang W, Chen X, Pan J, Zhang X, Zhang L. Epstein-Barr Virus and Human Cytomegalovirus Infection in Intestinal Mucosa of Chinese Patients With Inflammatory Bowel Disease. Front Microbiol. 2022; 13: 915453. doi: https://doi.org/10.3389/fmicb.2022.915453.
- Núñez Ortiz A, Rojas Feria M, de la Cruz Ramírez MD, et al. Impact of Epstein-Barr virus infection on inflammatory bowel disease (IBD) clinical outcomes. Rev Esp Enferm Dig. 2022; 114(5): 259-65. doi: https:// doi.org/10.17235/reed.2021.7915/2021.
- Zhou JQ, Zeng L, Zhang Q, et al. Clinical features of Epstein-Barr virus in the intestinal mucosa and blood of patients with inflammatory bowel disease. Saudi J Gastroenterol. 2020; 26(6): 312-20. doi: https://doi. org/10.4103/sjg.sjg_30_20.
- 41. Adelodun A, Abdellatief A, Babajide O. Epstein-Barr Virus Hepatitis Masquerading as Painless Jaundice. Cureus. 2022; 14(10): e30333. doi: https://doi.org/10.7759/cureus.30333.
- Palmer QD, Perisetti A, Garcia-Saenz-de-Sicilia M, Allard FD, Yee EU. 2219 Chronic Active Epstein-Barr Virus Presenting Primarily With Abnormal Liver Enzymes. Am J Gastroenterol. 2019; 114: S1243. doi: https://doi.org/10.14309/01.aig.0000598408.56125.56.
- Yaccob A, Mari A. Practical clinical approach to the evaluation of hepatobiliary disorders in inflammatory bowel disease. Frontline Gastroenterol. 2019; 10(3): 309-15. doi: https://doi.org/10.1136/flgastro-2018-101037.
- Singh L, Bajwa R, Imperio-Lagabon K, Carey W. S3485 Lymphoproliferative-Disorder-Like Liver Injury in an Elderly Patient With Acute Epstein-Barr Virus. Am J Gastroenterol. 2023; 118(10S): S2290. doi: https://doi. org/10.14309/01.ajg.0000963580.02528.70.