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Original Article

IntroductIon

Gallbladder	 carcinoma	 (GBC)	 is	 a	 fatal	 malignant	
adenocarcinoma	 arising	 from	 the	 epithelial	 lining	 of	
gallbladder	and	bile	ducts,	involving	the	chronic	biliary	tract.	
It	 is	 a	 disorder	with	 a	 high	mortality	 rate	 and	 is	 reported	
as	 one	 of	 the	most	 aggressive	 biliary	 cancers,	 having	 the	
shortest	median	survival	duration.	With	 the	 location	of	 the	
gallbladder	behind	the	liver	and	symptoms	common	to	other	
disorders	such	as	nausea,	jaundice,	vomiting,	stomach	pain,	
abdominal	lumps,	or	being	completely	asymptomatic	at	the	
initial	stages,	the	diagnosis	often	becomes	possible	only	at	an	
advanced	or	late	stage.	This	disease	suffers	from	the	limitation	
of	 suitable	markers	 for	 early	diagnosis	 and	very	 low	 rates	
of	survival.	Females	are	with	an	increased	risk.	The	global	

occurrence	 of	GBC	 is	 reported	 higher	 from	Korea,	 Japan,	
Slovakia,	Poland,	and	the	Czech	Republic.	It	is	also	enlisted	
in	 the	 category	 of	most	 common	 cause	 for	 cancer‑related	
mortality	 from	Northern	 and	North‑Eastern	 parts	 of	 India,	
South	Karachi,	Pakistan,	and	Quito,	Ecuador.	Globally,	Chile	
has	been	 reported	with	highest	mortality	 rates	with	higher	
mortality	rate	 in	men	(7.8/100,000)	as	compared	to	that	of	
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Introduction:	Gallbladder	cancer	(GBC)	is	a	fatal	malignancy	of	gallbladder	and	bile	ductswhich	shows	delayed	symptoms	and	sometimes	
can	be	asymptomatic,	being	fatal.	Reported	globally,	for	a	very	low	survival	rate,	it	suffers	from	the	lack	of	early	diagnostic	and	prognostic	
markers.	Single	nucleotide	polymorphisms	 (SNPs)	have	been	 reported	 to	be	associated	 in	different	 cancers.	Methods:	 In	 this	 study	using	
in	silico	methods,	we	report	 for	 the	first	 time	a	combination	of	SNPs	from	the	coding	and	noncoding	region	 leading	 to	alteration	 in	GBC.	
Different	 pipelines	were	designed	 for	 the	 study	of	SNPs.	Regulatory	 role	 alteration	of	Synonymous	 and	non‑coding	SNPs	were	 studied	
using	RegulomeDB,	DeepSEA	analysis	and	 funcPred.	Structural	alteration	and	energy	parameters	 for	non‑synonymous	SNPs	were	 studied	
by	Swiss‑PDB,	Chimera	and	Gromacs.	Protein	stability	analysis	was	done	using	MutPred,	mCSM	and	I‑mutant.	Results:	As	a	result,	 three	
potential	variants	from	the	coding	region	rs1042838,	rs11887534,	and	rs700519	associated	with	progesterone	receptor,	ATP	binding	cassette	
subfamily	G	member	8	 (ABCG8),	 and	 cytochrome	P450	19A1,	 respectively,	were	 predicted	 to	 be	 potentially	 damaging	SNPs	 in	GBC	
leading	 to	 structure	 and	 function	alteration.	Three	noncoding	SNPs	 (rs2978974,	 rs4633	and	 rs2830)	 and	1	missense	SNP(rs523349)	were	
shown	 to	be	associated	with	damaging	effect	 in	GBC,	and	one	of	 these	SNPs	(rs2978974)	showed	significant	chromatin	 feature	alteration.		
Conclusion:	Our	study	strongly	shows	that	SNPs	both	in	the	coding	and	noncoding	region	may	be	exploited	as	a	combination	of	potential	biomarkers	
in	early	diagnosis	of	GBC	due	to	structure	function	alteration	by	nonsynonymous	SNPs	and	regulatory	role	alteration	by	noncoding	SNPs.

Keywords:	ABCG8,	cancer,	gallbladder	cancer,	single‑nucleotide	polymorphism
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women	(16.6/100,000).[1,2]	Thus,	the	current	day	research	in	
gallbladder	cancer	is	focused	in	the	search	of	biomarkers	for	
early	diagnosis	and	prognosis.

Association	of	single‑nucleotide	polymorphisms	(SNPs)	with	
the	risk	in	gallbladder	cancer[3‑9]	and	gallbladder	stones[10‑12]	
has	been	reported	globally	and	also	from	isolated	populations.	
What	we	 do	 not	 know	 at	 this	 point	 is	whether	 common	
susceptibility	or	risk	factors	are	associated	with	the	origin	of	
both	gallbladder	stones	and	gallbladder	cancer	or	whether	one	
leads	to	the	other.

Intraspecies	 variation	 is	 largely	 attributed	 to	 SNPs.[13]	
Broadly,	SNPs	are	classified	 into	synonymous	 (silent)	SNP	
and	nonsynonymous	(missense)	SNP	(nsSNPs).	Synonymous	
SNPs,	arising	due	to	wobble	transfer	RNA	(tRNA)	base	pairing	
and	 redundancy	 in	 the	 genetic	 code,	 in	 coding	 regions,	 do	
not	 lead	 to	a	 change	 in	amino	acid	or	primary	polypeptide	
sequence.	Yet,	 synonymous	SNPs	find	 importance	 as	 they	
alter	the	messenger	RNA	(mRNA)	secondary	structures	and	
interfere	with	various	processes	of	mRNA	splicing,	mRNA	
stability,	 protein	 translation,	 and	 co‑translational	 protein	
folding,	thus	leading	to	changes	in	cis	and	trans	factors	that	
affect	 the	mRNA	stability	which,	 in	 turn,	may	 affect	 gene	
expression,	both	events	being	very	closely	linked.[13]	nsSNPs,	
on	the	other	hand,	lead	to	changes	in	the	amino	acid	sequence.	
Therefore,	 their	 study	 finds	 importance	 as	 they	 directly	
influence	the	translated	primary	polypeptide.	Such	changes	in	
amino	acid	sequence	are	not	only	related	to	their	alteration	in	
the	primary	sequence	but	also	may	reduce	protein	solubility	or	
destabilize	the	protein	structure.	We	tried	to	understand	through	
in silico	approaches	using	computational	tools	for	search	of	

biomarkers	and	the	structural‑functional	relation	of	SNP	with	
respect	to	its	coded	protein	in	gallbladder	cancer.

mAterIAls And methods

Identifying single‑nucleotide polymorphisms involved in 
gallbladder carcinoma
The	SNPs	for	GBC	were	obtained	from	PolySearch	2.0[14]	and	
were	 subjected	 to	various	 in silico	 analysis,	 and	 a	pipeline	
was	 designed	 for	 selection	 of	 SNPs	 having	 structural	 and	
functional	 importance.	 SNPs	 involved	 in	 the	GBC	were	
enlisted	through	PolySearch	2.0,[15]	with	the	query	keyword	
“Gallbladder	Cancer.”	A	list	of	41	SNPs	was	found	to	be	related	
with	GBC	and	had	a	greater	global	minor	 allele	 frequency	
(MAF)	value	[Table	1].	Location	of	these	SNPs,	either	in	the	
coding	region	or	noncoding	region,	was	found	using	Ensembl	
genome	browser.[16,17]	SNPs	were	sorted	based	on	their	location	
in	coding	or	noncoding	region.	The	dbSNP	database,	being	the	
most	extensive	database,	was	availed	for	our	study	in	spite	of	
its	limitations	of	containing	both	validated	and	nonvalidated	
polymorphisms.[18]	The	rsIDs	of	SNPs	under	study	were	entered	
in	the	Ensembl	and	their	precise	location	was	obtained.	We	
selected	missense	nsSNPs,	synonymous	SNPs,	and	noncoding	
SNPs	for	our	investigation.	Separate	methods	were	designed	
to	study	the	functionality	of	nsSNPs	[Figure	1].

Functional analysis of nonsynonymous single‑nucleotide 
polymorphisms
nsSNPs	 located	 in	 the	 coding	 region	 result	 in	 amino	 acid	
variations.	 PolyPhen‑2	web	 server[19]	 and	SIFT	were	 used	
to	predict	any	damaging	effect	of	nsSNPs	on	structure	and	

Figure 1: Schematic representation of computational tools for in silico analysis of single‑nucleotide polymorphisms in gallbladder cancer
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function	 of	 the	 protein	 by	 analysis	 of	multiple	 sequence	
alignment	 and	 protein	 three‑dimensional	 (3D)	 structure,[20]	
the	protein	sequence,	database	identifiers/accession	number,	
the	position	at	which	substitution	takes	place,	the	amino	acid	
being	substituted,	and	the	amino	acid	present	in	the	variant	
type.	For	our	study,	each	SNP	with	their	respective	rsIDs	was	

Table 1: List of single‑nucleotide polymorphisms in coding and noncoding region predicted by FuncPred

dbSNP ID Chromosome Position TFBS miRNA (miRanda)

SNPs affecting Regulatory role alteration
rs1065778 15 49307498 ‑ ‑
rs1065779 15 49292103 ‑ ‑
rs11267919 4 3487899 ‑ ‑
rs11614913 12 52671866 Y ‑
rs1361530 1 119767087 ‑ Y
rs1569686 20 30830740 ‑ ‑
rs1800775 16 55552737 Y ‑
rs1801132 6 152307215 ‑ ‑
rs1819698 1 119767042 ‑ Y
rs2234693 6 152205028 ‑ ‑
rs2304463 15 49295412 ‑ ‑
rs2606345 15 72804229 Y ‑
rs2695121 19 55572553 ‑ ‑
rs2830 17 37958089 Y ‑
rs2910164 5 159844996 Y ‑
rs2976392 8 143759934 Y ‑
rs2978974 8 143748866 Y ‑
rs35463555 19 55569492 Y ‑
rs3746444 20 33041912 Y ‑
rs3808607 8 59575478 Y ‑
rs3824260 8 59575744 Y ‑
rs4633 22 18330235 ‑ ‑
rs4646 15 49290136 ‑ Y
rs4818 22 18331207 ‑ ‑
rs523349 2 31659210 ‑ ‑
rs700518 15 49316404 ‑ ‑
rs708272 16 55553789 Y ‑
rs743572 10 104587142 Y ‑
rs7922612 10 95801429 ‑ ‑
rs9340799 6 152205074 ‑ ‑

SNPs in the coding region (nsSNP)

dbSNP ID Chromosome Position Protein associated Predicted damaging by SIFT or PolyPhen
rs10012 2 38155894 Cytochrome	P450 ‑
rs1042838 11 100438622 Progesterone	receptor 

rs1048943 15 72800038 Cytochrome	P450	1A1 ‑
rs1056836 2 38151707 Cytochrome	P450	1B1 ‑
rs11887534 2 43919751 ABCG8 

rs2066479 9 98037631s Testosterone	17‑beta‑dehydrogenase	3 ‑
rs2274223 10 96056331 Phospholipase	C	epsilon	1 ‑
rs2294008 8 143758933 Prostate	stem	cell	antigen ‑
rs4148217 2 43952937 ABCG8 ‑
rs6259 17 7477252 Sex	hormone‑binding	globulin ‑
rs700519 15 49295260 Cytochrome	P450	19A1 

Y:	SNPs	that	affect	function,	:	SNPs	predicted	to	be	damaging,	‑:	SNPs	that	don’t	affect	function,	SNPs:	Single‑nucleotide	polymorphisms,	TFBS:	Transcription	
factor	binding	site,	nsSNP:	Nonsynonymous	SNP,	dbSNP:	SNP	database,	ABCG8:	ATP‑binding	cassette	subfamily	G	member	8,	SIFT:	Sorting	intolerant	from	tolerant

Table 2: Parameters of protein in RAMPAGE

Protein Favored (%) Allowed (%) Outliers (%)
Progesterone	receptor 65.2 22.1 12.7
Aromatase 88.8 9 2.2
ABCG8 76.2 14.6 9.2
ABCG8:	ATP‑binding	cassette	subfamily	G	member	8
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uploaded,	and	the	study	was	done	for	every	nsSNPs.	Prediction	
outcomes	could	be	classified	as	probably	damaging,	possibly	
damaging,	or	benign	according	to	the	PolyPhen‑2	score	ranging	
from	0	to	1,[18]	The	score	refers	to	the	amino	acid	substitution	in	
the	variant	type	being	damaging.	These	scores	are	represented	
as	HumDiv	scores,	compiled	from	all	damaging	alleles	with	
known	 effects	 on	molecular	 function,	 and	HumVar	 scores	
which	consist	of	human	disease‑causing	mutations.	The	closer	
the	HumDiv	score	is	to	1,	it	is	indicative	of	greater	damaging	
nature	of	the	SNP.

SIFT	 is	 a	module	 that	 takes	 in	 a	 query	 sequence	 and	uses	
information	 of	multiple	 alignments	 for	 the	 prediction	 of	
tolerated	and	deleterious	substitutions	for	every	position	of	the	
query	sequence.	It	obtains	the	multiple	alignments	of	chosen	
sequences	and	calculates	the	normalized	probabilities	for	all	
possible	 substitutions	 at	 each	position	 from	 the	 alignment.	
Substitutions	 at	 each	 position	 are	 predicted	 to	 be	 either	
damaging	 or	 tolerated	 based	 on	whether	 the	 normalized	
probabilities	 are	 less	 than	 or	 greater	 than	 a	 tolerant	 index	
of	0.05.	The	nsSNPs	were	analyzed	to	obtain	the	damaging	
SNPs.	The	SNPs	found	to	be	damaging	were	shortlisted	for	
further	analysis.

Protein structure prediction
FASTA	mRNA	sequence	was	obtained	for	the	proteins	wherein	
the	SNP	was	 found	 to	 be	 damaging.	The	 site	 of	 SNP	was	
identified	in	the	protein	sequence,	and	the	SNP	was	subjected	
to	further	analysis.

I‑TASSER	web	server[21]	enabled	generation	of	the	3D	structure	
of	the	protein	and	also	predicted	the	biological	functions	of	
protein	molecules	 from	 amino	 acid	 sequence.	 It	 provides	
five	models	 based	 on	 the	 amino	 acid	 sequence,	 and	 each	
model	is	assigned	an	individual	confidence	scores	(C‑score)	
calculated	 based	 on	 the	 significance	 of	 threading	 template	
alignments	and	the	convergence	parameters	of	the	structure	
assembly	simulations.[18]	A	higher	C‑score	 indicates	greater	
confidence	 and	 vice	 versa.	 It	 also	 provides	 a	 template	
modeling	(TM)	score	which	measures	the	structural	similarity	
between	two	structures.	A	TM	score	>0.5	indicates	a	model	
of	 correct	 topology	whereas	 a	TM	score	<0.17	 indicates	 a	
random	similarity.	 It	 also	predicts	 solvent	 accessibility	 and	
ligand‑binding	sites.	Protein	sequence	was	submitted	to	the	
webserver,	and	the	protein	structure	was	obtained.

Verification of three‑dimensional model of protein
RAMPAGE	Ramachandran	 plot	 analysis	 was	 used	 for	
verification	 of	 3D	 structures.	 It	 provides	 the	 number	 of	
residues	in	the	favored,	allowed,	and	outlier	region.[22]	If	a	good	
proportion	of	residues	lie	in	the	favored	and	allowed	region,	
then	the	model	is	predicted	to	be	good.

Modeling nonsynonymous nucleotide polymorphisms on 
protein structure
Generation	 of	 the	mutated	models	 of	 the	 selected	 protein	
structure	for	the	corresponding	amino	acid	substitution	was	
achieved	using	Swiss‑PdbViewer	(v4.10).[23]	The	native	amino	

acid	is	replaced	with	the	variant	and	the.pdb	files	for	the	model	
were	saved.	GROMACS	is	used	as	a	default	force	field	used	
by	 the	server	for	energy	minimization	calculations.	Several	
parameters	such	as	total	energy	(KJ/mol),	total	electrostatic	
constraint,	total	bond	energy	(KJ/mol),	torsion	(KJ/mol),	and	
nonbonded	 energy	 (KJ/mol)	were	 calculated	 after	 energy	
minimization	for	native	as	well	as	mutant	structure.

The.pdb	files	were	further	analyzed	by	Chimera,	an	effective	
molecular	modeling	system	used	for	interactive	visualization	
and	 analysis	 of	molecular	 structures,	 sequence	 alignment,	
docking	analysis,	supramolecular	assemblies,	trajectories,	and	
conformational	analysis.[24]

Protein stability prediction
I‑Mutant	2.0,	mCSM,	and	MutPred	were	used	to	predict	the	
protein	stability	upon	the	mutation.	I‑Mutant	2.0[25]	was	used	
to	predict	the	stability	upon	single‑site	mutation.[26]	The	user	
can	either	provide	protein	structure	or	sequence	as	the	input.	
Along	with	the	protein	structure	or	sequence,	temperature	and	
pH	need	to	be	specified.	The	protein	sequence	consisting	the	
damaging	SNP	was	uploaded	to	I‑Mutant	and	output	obtained	
is	in	the	form	of	protein	stability	change	upon	mutation	and	
Gibbs‑free	energy	change.	MutPred[27]	predicts	the	probabilities	
of	gain	or	loss	of	a	function	due	to	a	particular	polymorphism,	
thus	providing	an	insight	to	molecular	mechanism	responsible	
for	the	disease.[28]	The	output	contains	top	5	property	scores	(p)	
where P is	the P value	that	certain	structural	and	functional	
properties	are	impacted.

mCSM	 machine	 learning	 method	 is	 used	 to	 predict	
the	 effects	 of	 missense	 mutations	 based	 on	 structural	
signatures.	mCSM	extracts	geometric	and	physicochemical	
patterns	 (represented	 in	 terms	 of	 pharmacophores)	 using	
a	 graph	 representation.	These	 are	 then	 used	 to	 represent	
the	3D	chemical	environment	during	supervised	 learning.	
Application	of	these	signatures	is	done	in	a	range	of	tasks	
including	the	protein	structural	classification	and	function	
prediction,	as	well	as	prediction	of	large‑scale	receptor	based	
on	protein‑ligand	prediction.[29]

Noncoding single‑nucleotide polymorphisms functional 
analysis
Tools	 predicting	 potential	 functional	 effects	 of	 SNPs	 in	
noncoding	binding	sites	such	as	intron/exon	border	consensus	
sequences	(splice	sites),	transcription	factor	binding	sites,	exonic	
splicing	enhancers	(ESEs),	and	microRNA	(miRNA)	binding	
were	used.	SNPinfo	(FuncPred).[30]	and	RegulomeDB[31]	were	
used	to	screen	SNPs	based	on	their	functionality	for	further	
genetic	mapping	services.	The	functionality	of	the	SNPs	was	
determined	by	SNPinfo	(FuncPred)	web	server	which	helps	in	
studying	the	SNPs	for	genetic	association	studies	and	consists	
of	three	pipelines	for	SNP	selection.	Among	the	several	tools,	
i.e.,	TagSNP,	FuncPred,	and	SNPseq	in	SNPinfo	web	server,	
to	 study	 the	 functionality	of	 the	SNPs,	we	chose	FuncPred	
prediction	 software,	which	 is	 a	 composite	 of	 PolyPhen,	
SNP3D,	 MATCH,	 TRANSFAC	 12.1,	 RESCUE‑ESE,	
ESEfinder,	FAS–ESS,	miRanda,	and	miRBase.	Queries	were	



Pradhan, et al.: In-silico analysis of SNPs in GBC

Journal of Natural Science, Biology and Medicine ¦ Volume 9 ¦ Issue 2 ¦ July-December 2018 141

submitted	for	all	the	SNPs	in	the	genes	or	chromosomal	region	
or	with	their	respective	rsID.	The	SNPs	related	to	the	GBC	
were	entered	in	a	batch	submission	with	their	respective	rsID.	
The	output	was	a	list	of	SNPs	with	possible	functional	effect.

RegulomeDB	 software	was	 also	 used	 to	 complement	 the	
SNP	prioritization.	Utilizing	 the	online	 composite	database	
integrating	a	 large	collection	of	 regulatory	 information	and	
prediction	tools	to	annotate	and	prioritize	potential	regulatory	
variants	 derived	 from	genomic	 sequencing,	RegulomeDB	
uses	 databases	 that	 take	 their	 datasets	 from	 chromatin	
immunoprecipitation	sequencing	(ChIP‑seq),	histone	ChIP‑seq,	
chromatin	state	information,	and	expression	quantitative	trait	
loci	(eQTL)	information.	Thus,	it	helps	in	in	silico	predictions	
through	DNase	footprinting	to	identify	protein	binding	sites,	
transcription	factors	binding	domain	and	regulatory	binding	
motif	variations	of	nucleotide	variants.[31]	It	divides	the	variants	
into	 six	 categories.	Category	1	 variants	 are	 likely	 to	 affect	
binding	and	linked	to	expression	of	a	gene	target.	Category	2	
variants	are	likely	to	affect	binding.	Category	3	variants	are	
less	likely	to	affect	binding.	Category	4,	5,	and	6	variants	have	
minimal	binding	evidence.[18]	A	batch	of	noncoding	SNPs	and	
synonymous	SNPs	was	uploaded	to	 the	software	with	 their	
respective	rsIDs	and	each	SNP	was	assigned	a	score	from	1	
to	6.	The	SNPs	predicted	to	affect	binding	were	shortlisted	for	
further	analysis	by	DeepSEA.

The	 chromatin	 effects	 of	 single	 nucleotide	 alteration	 in	
sequences	were	 predicted	 using	DeepSEA.[32]	Through	 the	
“in silico	 saturated	mutagenesis”	 approach,	 prediction	 of	
chromatin	 feature	 informative	 sequence	 elements	 for	 any	
sequence	can	be	identified.	DeepSEA	accurately	predicts	the	
effect	of	individual	SNPs	on	TF	binding	with	the	DeepSEA	
TF‑binding	 classifiers,	which	 are	 demonstrated	 for	 several	
SNPs	that	have	experimentally	validated	well‑known	effects	on	
TF	binding.	DeepSEA	prioritizes	functional	SNPs	on	the	basis	
of	the	predicted	signals	of	chromatin	effect.	DeepSEA	supports	
three	types	of	input:	vcf,	FASTA,	and	bed.	We	used	vcf	format	
for	predicting	effects	of	noncoding	variants.	 In	vcf	 format,	
each	line	has	at	least	5	tab‑separated	fields.	The	first	column	
consists	of	chromosome	name.	The	second	column	contains	
position	in	a	chromosome.	The	variant	name	is	specified	in	
the	 third	 column.	The	 fourth	 and	 the	fifth	 column	contains	
reference	allele	(wild	type)	and	alternative	allele	(mutant).	Log	
fold	changes	along	with	probability	differences	and	E‑values	
are	essential	for	evaluating	variant’s	impact.

Network analysis of potential proteins with other proteins 
involved in gallbladder carcinoma
GeneMANIA	was	availed	for	network	analysis	of	potential	
biomarker	proteins.	Protein‑protein,	protein‑DNA,	and	genetic	
interactions,	pathways,	reactions,	gene	and	protein	expression	
data,	protein	domains,	and	phenotypic	screening	profiles	are	
included	in	GeneMANIA	searches.[33]

results

Using	FuncPred	we	 found,	 among	 the	 41	SNPs,	 30	SNPs	
[Table	1]	were	found	to	be	either	synonymous	or	noncoding	
and	11	SNPs	were	 found	 to	 be	 non‑synonymous.	Separate	
pipelines	were	designed	for	the	study	of	SNPs	in	the	coding	
region	and	in	the	noncoding	region	[Figure	1].

From	the	PolyPhen‑2	and	SIFT	analysis,	the	SNPs	in	the	coding	
region	predicted	to	have	deleterious	effect	were	selected	for	
further	analysis.

All	the	11	SNPs	in	the	coding	region	[Table	1]	were	submitted	
to	the	PolyPhen‑2	server.	One	nsSNP	rs11887534	[Table	1]	
associated	with	ATP‑binding	 cassette	 (ABC)	 subfamily	G	
member	8	was	 found	 to	be	possibly	damaging	with	a	very	
high	HumDiv	 score	 of	 0.769	 and	HumVar	 score	 of	 0.525.	
Analysis	 by	SIFT	predicted	 two	other	 variants	 (rs1042838	
and	rs700519)	to	be	highly	damaging.	rs1042838	associated	
with	 progesterone	 receptor	was	 found	 to	 be	 damaging	 and	
had	a	median	conservation	score	of	3.56	[Table	1].	rs700519	
associated	with	 cytochrome	 P450	 19A1	 (aromatase)	was	
predicted	to	be	damaging	and	had	a	median	conservation	score	
of	3.05.	We	moved	forward	with	these	three	highly	damaging	
SNPs	 (rs11887534,	 rs1042838,	 and	 rs700519)	 to	find	 their	
structure‑function	alteration	[Figures	2‑4].

Structural analysis of native and mutant protein
rs11887534	is	associated	with	ABCG8	gene.	FASTA	sequence	
of	 native	ABCG8	was	 obtained.	The	 location	 of	SNP	was	
obtained	from	NCBI,	and	the	position	of	mutation	was	found	
out.	Native	 protein	 sequence	was	 submitted	 to	 I‑TASSER	
in	 their	 respective	 FASTA	 format.	 Five	models	 of	 native	
ABCG8	were	obtained	as	an	output;	of	these,	the	first	model	
with	highest	C	score	of	−	0.90,	TM	score	of	0.60	±	0.14,	and	
estimated	RMSD	10.1	±	4.6	Å	was	considered	for	the	analysis.	
Similarly,	out	of	the	five	models	obtained	for	native	aromatase	
protein,	 the	first	model	with	highest	C	score	of	−0.69,	TM	
score	of	0.81	±	0.09,	and	estimated	RMSD	5.8	±	3.6	Å,	and	

Table 3: Native versus protein mutant out of single‑nucleotide polymorphism

ABCG8 
native

ABCG8 
mutant

Progesterone 
native

Progesterone 
mutant

Aromatase 
native

Aromatase 
mutant

Total	Energy	(KJ/mol) ‑27918.332 ‑29442.268 ‑21743.91 ‑22558.859 ‑25110.941 ‑25472.408
Total	electrostatic	constraint ‑21661.68 ‑21797.66 ‑20554.77 ‑20262.72 ‑14933.51 ‑14746.16
Total	bond	energy	(KJ/mol) 675.189 639.677 990.564 926.881 446.003 406.257
Torsion	(KJ/mol) 7057.365 6738.392 10358.655 9962.072 3511.209 3376.156
Non	Bonded	energy	(KJ/mol) ‑20744.88 ‑21399.17 ‑21323.85 ‑21740.44 ‑17653.67 ‑17933.77
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for	progesterone	receptor,	the	first	model	with	highest	C	score	
of	 −0.29,	TM	 score	 of	 0.75	±	 0.10,	 and	 estimated	RMSD	
8.1	±	4.4	Å	were	considered	for	the	analysis.

RAMPAGE	was	 used	 to	 support	 the	 quality	 of	 predicted	
protein	models.	All	 the	 three	 protein	models	 showed	good	
proportion	of	residues	in	the	favored	and	allowed	regions	in	
RAMPAGE	[Table	2	and	Figures	2‑4].

To	get	the	variant	modelled	structure,	Swiss‑PdbViewer	was	
used.	The	D19H	polymorphism	in	the	ABCG8	[Tables	3	and	4]	
showed	deviation	from	the	native	model	in	various	parameters	
including	total	energy	after	minimization,	 total	electrostatic	
constraint,	total	bond	energy,	torsion,	and	nonbonded	energy.	
The	molecular	analysis	by	Chimera	showed	change	in	hydrogen	
bonding	due	to	the	D19H	point	mutation	[Figure	4].	The	R264C	
mutation	in	the	cytochrome	P450	19A1	(aromatase)	showed	
deviation	from	the	native	model	[Table	3].	The	Arg	→	Cys	
variation	at	position	264	showed	clashes	with	its	neighboring	
glutamate	residue	at	position	261	[Figure	2].	This	variation	also	
caused	a	change	in	hydrogen	bonding	of	Cys	at	264	with	its	
neighboring	residues.	The	Val	→	Leu	variation	at	position	660	
in	the	progesterone	receptor	[Figure	3]	showed	clashes	with	
its	neighboring	Phe	residue	at	794	position	and	also	caused	a	
change	in	hydrogen	bonding.

Table 4: Prediction by MutPred for protein structural 
stability

Mutation Protein Top feature alteration
D19H ABCG8 Gain	of	glycosylation	at	T16

Gain	of	catalytic	residue	at	D19
Loss	of	phosphorylation	at	S21
Loss	of	helix
Gain	of	loop

R264C Aromatase Loss	of	methylation	at	K262
Loss	of	MoRF	binding	loss	of	
catalytic	residue	at	R264
Gain	of	ubiquitination	at	K262

V660L Progesterone	
receptor

Loss	of	catalytic	residues	at	G661
Gain	of	glycosylation	at	P663
Loss	of	MoRF	binding

MoRF:	Molecular	recognition	feature,	ABCG8:	ATP‑binding	cassette	
subfamily	G	member	8

Figure 2: (a) Three‑dimensional analysis of wild and valiant residues of aromatase at position 263. A: Arg (orange color at 264 position). B: Network 
clashes (yellow lines, indicated with white dotted lines) appeared between variant residue Cys 264 (light blue color) with Glu (magenta color). 
(b) Ramachandran of predicted aromatase secondary structure

b
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Prediction of protein structural stability and other effects
Analysis	by	 I‑Mutant	 indicates	 that	 conversion	of	negatively	
charged	aspartic	acid	to	positively	charged	histidine	amino	acid	
at	position	19	decreases	the	stability	of	ABCG8	gene.	I‑Mutant	
also	predicted	the	other	two	conversions,	Arg	→	Cys	variation	
at	position	264	and	Val	→	Leu	variation	at	position	660	to	be	
destabilizing.	All	the	three	SNPs	were	predicted	to	be	destabilizing	
by	mCSM	software	due	to	their	negative	ΔΔG	values	[Table	5].

MutPred	predicted	structural	alterations	due	to	the	SNPs.	The	
D19H	mutation	 leads	 to	gain	of	glycosylation	at	T16,	gain	

of	catalytic	residue	at	D19,	 loss	of	phosphorylation	at	S21,	
and	 loss	 of	 a	 helix	 [Table	 4].	The	R264C	mutation	 causes	
loss	 of	methylation	 at	K262,	 loss	 of	molecular	 recognition	
feature	(MoRF)	binding,	loss	of	catalytic	residue	at	R264,	and	
gain	of	ubiquitination	at	K262.	The	V660	L	mutation	causes	
loss	 of	 catalytic	 residues	 at	G661,	 gain	 of	 glycosylation	 at	
P663,	and	loss	of	MoRF	binding.	The	results	obtained	from	
MutPred	have	been	summarized	in	Table	4.

Functional analysis of noncoding and synonymous single 
nucleotide polymorphisms
A	list	of	30	SNPs	was	 submitted	 to	 the	FuncPred	program	
and	the	results	obtained	are	summarized	in	Table	1.	Out	of	
these	30	SNPs	[Table	1],	a	total	of	16	SNPs	were	predicted	
to	have	effect	on	function;	out	of	which,	3	SNPs	were	found	
to	 affect	miRNA‑binding	 site	 and	 13	SNPs	were	 found	 to	
affect	 transcription‑binding	 site.	RegulomeDB	was	used	 to	
complement	SNP	prioritization.	RegulomeDB	divided	30	SNPs	
into	six	categories	(Category	1	to	Category	6),	where	23	SNPs	
had	annotation	scores	[Table	6]	and	the	rest	7	SNPs	had	no	
annotation	data	(not	shown	in	 table).	Out	of	23	SNPs,	four	

Table 5: Protein structural stability analysis

SNP Protein 
associated

ΔΔG (predicted by 
mCSM)

I‑mutant 
results

D19H ABCG8 −1.107	kcal/mol Destabilizing
V660L Progesterone	

receptor
−0.349	kcal/mol Destabilizing

R264C Aromatase −0.689	kcal/mol Destabilizing
SNP:	Single‑nucleotide	polymorphism,	ABCG8:	ATP‑binding	cassette	
subfamily	G	member	8

Figure 3: (a) Three‑dimensional analysis of wild and valiant residues of progesterone at position 660. A: Val (red color) at 660 position. B: Network 
of clashes (yellow lines, indicated with white dotted lines) appeared between variant residue Leu 660 with Phe 794 (violet color). (b) Ramachandran 
of predicted progesterone receptor secondary structure
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SNPs	were	found	to	likely	affect	binding	with	a	RegulomeDB	
score	of	2b	(Category	2),	one	SNP	was	found	to	less	likely	
affect	 binding	with	 a	RegulomeDB	 score	 of	 3a	 (Category	
3),	 and	 the	 remaining	 18	 SNPs	 had	minimum	 functional	
evidence	(Category	4,	5,	and	6).	The	four	SNPs,	i.e.	rs2978974,	
rs4633,	rs2830,	and	rs523349	which	were	predicted	to	likely	
affect	binding	had	annotations	for	transcription	factor	binding,	
DNase	peak,	and	motif	hit	and	thus	likely	to	have	regulatory	
roles	[Table	6].

All	the	4	SNPs	predicted	to	affect	binding	were	subjected	to	
DeepSEA	analysis	to	predict	the	chromatin	effects	of	sequence	
alterations	with	 single‑nucleotide	 sensitivity.	The.vcf	 files	
for	 all	 four	 SNPs	were	 submitted	 to	DeepSEA.	However,	
DeepSEA	could	analyze	only	two	variants	[Figure	5a‑b].	It	
provided	chromatin	feature	probability	log	fold	changes	for	
both	the	variants.	The	variant	(rs2978974)	associated	with	the	
PSCA	gene	showed	five	chromatin	feature	alterations	to	be	
significant	with	an	E	≤	0.02	[Figure	5a	and	Table	7].	The	gene	
interactions	of	the	four	essential	biomarker	proteins	(ABCG8,	
cytochrome	P450	19A1,	progesterone	 receptor,	and	PSCA)	
with	other	proteins	involved	in	GBC	are	shown	in	Figure	6.

dIscussIon

Gallbladder	 carcinoma,	 a	malignant	 adenocarcinoma	 of	
gallbladder	 epithelial	 tissue,	 has	 high	mortality	 rate	 and	
lacks	 suitable	markers	 for	 early	 diagnosis	 and	 prognosis.	
It	 is	 essential	 to	 detect	 the	 potential	 biomarker	 out	 of	 the	
several	genetic	markers	and	protein	markers	available.	Since	
it	 is	 difficult	 to	 study	 all	 the	 SNPs	 associated	with	GBC,	
interpretation	of	clinically	essential	novel	markers	is	always	
challenging.	In	the	current	study	using	in silico	analysis,	we	
could	 screen	 important	 variants	which	 could	 be	 potential	
therapeutic	targets.

In	this	study	the	first	of	its	kind,	by	in silico	analysis	of	SNPs	
involved	in	GBC	performed	by	several	bioinformatics	tools,	
we	report	(i)	seven	novel	SNPs	in	coding	as	well	as	noncoding	
region	which	could	 serve	as	 essential	biomarker	 and	could	
be	 potential	 therapeutic	 targets,	 (ii)	Both	 synonymous	 and	
nsSNPs	 as	 potential	 biomarker,	 (iii)	 understanding	 of	 the	
structure‑function	 alteration	 in	nsSNPs,	 and	 (iv)	 regulatory	
role	alteration	by	SNPs	in	noncoding	region.

Separate	pipelines	designed	for	the	study	of	SNPs	in	coding	
and	noncoding	region	are	unique	in	this	study	to	understand	

Figure 4: (a) Three‑dimensional analysis of wild and valiant residues of ABCG8 at position. A: Asp (green color) at 19 position. B: Variant residue 
His19 (grey color). (b) Ramachandran plot of predicted ABCG8 secondary structure

a
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the	 functional	 role	of	each	variant.	Three	potential	variants	
present	 in	 the	 coding	 region	were	 predicted	 by	SIFT	 and	
PolyPhen.	rs1042838,	rs11887534,	and	rs700519	associated	
with	progesterone	receptor,	ABC	subfamily	G	member	8,	and	
cytochrome	P450	19A1,	 respectively,	were	 predicted	 to	 be	
potentially	damaging	SNPs	in	GBC.

Human	ATP	 transporters,	 48	 in	 number,	 comprising	 of	
7	 subfamilies,	 sharing	 similar	 structure	 and	 function	 by	
transportation	of	molecules	across	membranes	by	utilizing	
the	 energy	 derived	 from	hydrolysis	 of	ATP.	Of	 the	 seven	
distinct	subfamilies	of	ABC	genes	including	(ABC1,	MDR/
TAP,	MRP,	ALD,	OABP,	GCN20,	 and	White),	ABCG8	
belongs	 to	 the	 subfamily	White.	Very	 recently,	 the	 crystal	
structure	 of	 the	 human	 sterol	 transporter	ABCG5/ABCG8	
has	been	deciphered.[34,35]	ABCG8	or	ATP‑binding	 cassette	
subfamily	G	member	8	is	an	apical	membrane	sterol	export	
pump,	expressed	in	specific	tissues	of	gallbladder,	liver,	and	
intestine.	It	belongs	to	the	superfamily	of	ABC	transporters	
that	boost	the	active	efflux	of	cholesterol	from	hepatocytes	
to	bile.[35,36]	Excessive	amount	of	cholesterol	content	in	bile	
is	 associated	with	 development	 of	 gallstones.	The	D19H	
polymorphism	in	ABCG8	gene	is	proposed	to	 increase	 the	
expression	 of	ABCG8	 or	 enhance	 its	 function,	 resulting	
in	more	 efficient	 transfer	 of	 cholesterol	 into	 bile	 and	 the	
accumulation	of	cholesterol	in	the	gallbladder	forming	the	key	
step	for	gallstone	formation.[36]	Although	D19H	polymorphism	
in	ABCG8	has	been	 earlier	 reported	 to	be	 associated	with	
the	risk	in	gallbladder	stones,[12]	no	study	has	been	done	to	
identify	 the	 functional	 significance	 of	 SNP	 in	 gallbladder	
cancer.	Since	full‑length	protein	structure	of	native	ABCG8	
is	not	yet	available	in	the	protein	data	bank,	it	was	essential	
to	generate	a	full‑length	model	of	native	ABCG8	and	find	the	
structure‑function	alteration	of	D19H	polymorphism.	Only	
a	 partial	 structure	 of	ABCG8	with	 PDB	 ID	 5DO7	 exists.	
The	model	of	ABCG8	generated	was	compared	in	terms	of	
several	parameters	such	as	total	energy	after	minimization,	
total	electrostatic	constraint,	total	bond	energy,	torsion,	and	
nonbonded	energy	for	both	native	and	mutant	structure,	and	a	
clear	deviation	was	observed	for	native	and	mutant	structure.	
A	 variation	 in	 terms	 of	 hydrogen	 bonding	 difference	was	
observed.	The	D19H	mutation	was	also	predicted	 to	cause	
a	gain	of	glycosylation	at	T16,	gain	of	catalytic	 residue	at	
D19,	loss	of	phosphorylation	at	S21,	and	loss	of	a	helix.	Our	

Table 6: Contd...

dbSNP ID RDB score Category Description
rs2695121 4 Minimal	binding	

evidence
TF	
binding	+	DNase	
peak

rs1801132 4 Minimal	binding	
evidence

TF	
binding	+	DNase	
peak

rs9340799 Nil Nil Nil
rs2234693 Nil Nil Nil
RDB:	 RegulomeDB,	 TF:	 Transcription	 factor,	 dbSNP:	 SNP	 database,	
SNP:	Single‑nucleotide	polymorphism

Table 6: List of single‑nucleotide polymorphisms 
predicted by RegulomeDB score

dbSNP ID RDB score Category Description
rs3824260 6 Minimal	binding	

evidence
Motif	hit

rs3808607 4 Minimal	binding	
evidence

TF	
binding	+	DNase	
peak

rs2976392 5 Minimal	binding	
evidence

DNase	peak	+	motif	
hit

rs2978974 2b Likely	to	affect	
binding

TF	
binding	+	DNase	
peak	+	motif	hit

rs708272 5 Minimal	binding	
evidence

DNase	peak	+	motif	
hit

rs1800775 3a Less	likely	to	
affect	binding

TF	
binding	+	DNase	
peak	+	motif	hit

rs11267919 Nil Nil Nil
rs2606345 4 Minimal	binding	

evidence
TF	
binding	+	DNase	
peak

rs700518 5 Minimal	binding	
evidence

DNase	peak

rs1065778 4 Minimal	binding	
evidence

TF	
binding	+	DNase	
peak

rs2304463 Nil Nil Nil
rs1065779 6 Minimal	binding	

evidence
Motif	hit

rs4646 Nil Nil Nil
rs4633 2b Likely	to	affect	

binding
TF	
binding	+	DNase	
peak	+	motif	hit

rs4818 4 Minimal	binding	
evidence

TF	
binding	+	DNase	
peak

rs2830 2b Likely	to	affect	
binding

TF	
binding	+	DNase	
peak	+	motif	hit

rs1819698 Nil Nil Nil
rs1361530 6 Minimal	binding	

evidence
Motif	hit

rs523349 2b Likely	to	affect	
binding

TF	
binding	+	DNase	
peak	+	motif	hit

rs1569686 5 Minimal	binding	
evidence

DNase	peak

rs2910164 Nil Nil Nil
rs11614913 5 Minimal	binding	

evidence
DNase	peak

rs3746444 5 Minimal	binding	
evidence

DNase	peak	+	motif	
hit

rs743572 4 Minimal	binding	
evidence

TF	
binding	+	DNase	
peak

rs7922612 5 Minimal	binding	
evidence

DNase	peak

rs35463555 4 Minimal	binding	
evidence

TF	
binding	+	DNase	
peak

Contd...
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findings	are	indicative	of	the	fact	that	there	could	be	a	possible	
single‑point	factor	D19H	polymorphism	in	ABCG8	gene	that	
is	associated	with	the	genesis	of	both	gallbladder	cancer	and	
gallbladder	stones	and	finds	importance	as	a	biomarker	in	both	
disorders	as	leading	to	significant	alteration	in	the	structure	
and	function	of	the	protein.

The	 R264C	 polymorphism	 in	 aromatase	 and	V660	 L	
polymorphism	 in	 progesterone	 receptors	 show	 a	 clear	
deviation	of	energy	parameters	for	native	and	mutant	structure.	
A	possible	reason	for	R264C	polymorphism	to	decrease	the	
stability	could	be	due	to	the	smaller	size	cysteine	residue	in	
the	mutant	structure	which	shows	clash	with	the	neighboring	
glutamate	 residue	 at	 position	 261.	V660	L	 polymorphism	

causes	a	clash	between	leucine	and	phenylalanine	residue	at	
794	position.	This	clash	could	possibly	be	the	reason	due	to	
the	decrease	in	stability	of	the	mutant	structure.

SNPs	 either	 noncoding	 or	 synonymous	 could	 impair	 the	
regulatory	 roles	 and	 thus	 find	 an	 important	 place	 to	 be	
potential	biomarker	for	GBC.	RegulomeDB	provided	three	
SNPs	 (rs2978974,	 rs4633	 and	 rs2830)	 [Table	 6]	 either	
synonymous	 or	 non‑coding,	 which	 had	 annotations	 for	
transcription	factor	binding,	DNase	peak,	and	motif	hit	and	
thus	 have	 regulatory	 roles.	Out	 of	 these	 three	SNPs,	 one	
SNP	rs2978974	associated	with	PSCA	showed	significant	
chromatin	 feature	 alteration	 of	 EZH2	 and	 SUZ12	with	
E	 ≤	 0.02	 [Table	 7].	 Thus,	 this	 variant	 associated	 with	

Table 7: Chromatin feature alteration for PSCA gene

Chromatin features Cell type Effect (log 2‑fold change) E Normalized (P)

Reference Alternative
EZH2 H1‑hESC −0.17634 0.011047 0.11462 0.102839
SUZ12 NT2‑D1 −0.14663 0.014651 0.074535 0.067712
EZH2 HUVEC −0.17546 0.015497 0.050659 0.044996
EZH2 NHDF‑	

Ad
−0.14576 0.015604 0.060729 0.054996

EZH2 NHLF −0.11262 0.018788 0.104873 0.097851

Figure 5: (a) A: Chromatin feature alteration sorted by log2 fold change in PSCA gene. B: Chromatin feature alteration sorted by chromatin feature 
in PSCA gene. (b) A: Chromatin feature sorted by log2 fold change in SRD5A2 gene. B: Chromatin feature alteration sorted by chromatin in SRD5A2
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R264C	 polymorphism	 in	 cytochrome	 P450	 19A1,	 and	
V660	 L	 polymorphism	 in	 progesterone	 receptor	 are	 the	
most	 deleterious	 nsSNPs	 in	 gallbladder	 cancer.	Due	 to	 the	
observed	prominent	alteration	of	the	protein	3D	structure,	these	
markers	find	 significance	 in	 drug	 targeting	 and	 therapeutic	
importance.	 (ii)	We	 also	 report	 three	 SNPs	 (rs2978974,	
rs4633	and	rs2830)	[Table	6]	either	noncoding	or	synonymous	
and	 a	missense	SNP(rs523349),	which	had	 annotations	 for	
transcription	factor	binding,	DNase	peak,	and	motif	hit	and	
thus	reveal	a	deleterious	effect	in	GBC	and	finds	significance	
as	biomarkers	for	early	diagnosis	of	GBC.	(iii)	The	variant	

PSCA	can	be	potential	biomarker.	PSCA	has	been	shown	
to	be	downregulated	due	 to	methylation	 in	 nonneoplastic	
gallbladder	 lesions	 with	 growth‑suppressive	 effects	 in	
adenocarcinoma[5]	 suggesting	 its	 function	 as	 a	 tumor	
suppressor.	Although	 the	 role	of	PSCA	has	been	 reported	
in	several	physiological	functions	including	cell	adhesion,	
signal	 transduction,	 inhibition	 of	 cell	 proliferation,	 and/
or	 induction	 of	 cell	 death,	 its	 biological	 functions	 in	
carcinogenesis	are	not	yet	fully	understood.

In	our	study	through	in silico	approaches,	we	strongly	report	
for	 the	first	 time	 that	 (i)	D19H	polymorphism	 in	ABCG8,	

Figure 6: Gene interaction network. (a) Overall interaction of the genes involved in gallbladder cancer. (b) PSCA interacts with CYP17A1. (c) PGR 
interacts with ESR1 and HSD17B3. (d) CYP19A1 interacts with HSD17B1, CYP1A1, ESR1, HSD3B2, LRPAP1, CYP7A1, CYP7B1, and CYP17A1. 
(e) ABCG8 interacts with ABCG5
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rs2978974	in	PSCA	[Figure	5a]	showed	significant	chromatin	
feature	alteration	and	thus	could	be	potential	biomarker	for	
early	diagnosis.

The	gene	network	analysis	showed	the	interactions	of	these	
potential	biomarker	proteins	with	other	proteins	involved	in	
gallbladder	carcinoma.	It	is	pretty	much	clear	that	the	SNPs	in	
the	potential	biomarker	proteins	could	alter	their	interactions	
with	 other	 protein	 downstream,	 thus	 resulting	 in	 a	major	
malfunction	 in	 the	cascade	of	 reaction.	CYP19A1	 interacts	
with	 HSD17B1,	 CYP1A1,	 ESR	 1,	 HSD3B2,	 LRPAP1,	
CYP7A1,	CYP7B1,	 and	CYP17A1.	 PSCA	 interacts	with	
CYP17A1.	PGR	interacts	with	ESR1	and	HSD17B3.	ABCG8	
interacts	with	ABCG5.

Our	current	study	has	highlighted	SNPs,	both	in	the	coding	and	
noncoding	region,	that	play	important	role	in	GBC	and	may	
be	exploited	as	markers	to	the	disease.	Due	to	the	common	
SNP	of	D19H	in	ABCG8	region	being	associated	with	both	
gallbladder	cancer	and	gallbladder	stones,	the	questions	as	to	
whether	one	disease	leads	to	the	other	or	are	there	other	factors	
involved	in	the	genesis	of	gallbladder	cancer,	which	remains	
the	 future	 scope	of	 research.	The	other	 two	SNPs,	R264C	
polymorphism	 in	 aromatase	 and	V660	L	polymorphism	 in	
progesterone	receptors	 in	 the	coding	region	along	with	the	
rs2978974	 in	 noncoding	 region	 of	 PSCA,	 could	 also	 be	
important	 biomarkers	 and	 thus	 potential	 drug	 targets	 for	
gallbladder	carcinoma.
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