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Introduction

Gallbladder carcinoma  (GBC) is a fatal malignant 
adenocarcinoma arising from the epithelial lining of 
gallbladder and bile ducts, involving the chronic biliary tract. 
It is a disorder with a high mortality rate and is reported 
as one of the most aggressive biliary cancers, having the 
shortest median survival duration. With the location of the 
gallbladder behind the liver and symptoms common to other 
disorders such as nausea, jaundice, vomiting, stomach pain, 
abdominal lumps, or being completely asymptomatic at the 
initial stages, the diagnosis often becomes possible only at an 
advanced or late stage. This disease suffers from the limitation 
of suitable markers for early diagnosis and very low rates 
of survival. Females are with an increased risk. The global 

occurrence of GBC is reported higher from Korea, Japan, 
Slovakia, Poland, and the Czech Republic. It is also enlisted 
in the category of most common cause for cancer‑related 
mortality from Northern and North‑Eastern parts of India, 
South Karachi, Pakistan, and Quito, Ecuador. Globally, Chile 
has been reported with highest mortality rates with higher 
mortality rate in men (7.8/100,000) as compared to that of 
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Introduction: Gallbladder cancer (GBC) is a fatal malignancy of gallbladder and bile ductswhich shows delayed symptoms and sometimes 
can be asymptomatic, being fatal. Reported globally, for a very low survival rate, it suffers from the lack of early diagnostic and prognostic 
markers. Single nucleotide polymorphisms (SNPs) have been reported to be associated in different cancers. Methods: In this study using 
in silico methods, we report for the first time a combination of SNPs from the coding and noncoding region leading to alteration in GBC. 
Different pipelines were designed for the study of SNPs. Regulatory role alteration of Synonymous and non-coding SNPs were studied 
using RegulomeDB, DeepSEA analysis and funcPred. Structural alteration and energy parameters for non-synonymous SNPs were studied 
by Swiss-PDB, Chimera and Gromacs. Protein stability analysis was done using MutPred, mCSM and I-mutant. Results: As a result, three 
potential variants from the coding region rs1042838, rs11887534, and rs700519 associated with progesterone receptor, ATP binding cassette 
subfamily G member 8 (ABCG8), and cytochrome P450 19A1, respectively, were predicted to be potentially damaging SNPs in GBC 
leading to structure and function alteration. Three noncoding SNPs (rs2978974, rs4633 and rs2830) and 1 missense SNP(rs523349) were 
shown to be associated with damaging effect in GBC, and one of these SNPs (rs2978974) showed significant chromatin feature alteration. 	
Conclusion: Our study strongly shows that SNPs both in the coding and noncoding region may be exploited as a combination of potential biomarkers 
in early diagnosis of GBC due to structure function alteration by nonsynonymous SNPs and regulatory role alteration by noncoding SNPs.
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women (16.6/100,000).[1,2] Thus, the current day research in 
gallbladder cancer is focused in the search of biomarkers for 
early diagnosis and prognosis.

Association of single‑nucleotide polymorphisms (SNPs) with 
the risk in gallbladder cancer[3‑9] and gallbladder stones[10‑12] 
has been reported globally and also from isolated populations. 
What we do not know at this point is whether common 
susceptibility or risk factors are associated with the origin of 
both gallbladder stones and gallbladder cancer or whether one 
leads to the other.

Intraspecies variation is largely attributed to SNPs.[13] 
Broadly, SNPs are classified into synonymous  (silent) SNP 
and nonsynonymous (missense) SNP (nsSNPs). Synonymous 
SNPs, arising due to wobble transfer RNA (tRNA) base pairing 
and redundancy in the genetic code, in coding regions, do 
not lead to a change in amino acid or primary polypeptide 
sequence. Yet, synonymous SNPs find importance as they 
alter the messenger RNA (mRNA) secondary structures and 
interfere with various processes of mRNA splicing, mRNA 
stability, protein translation, and co‑translational protein 
folding, thus leading to changes in cis and trans factors that 
affect the mRNA stability which, in turn, may affect gene 
expression, both events being very closely linked.[13] nsSNPs, 
on the other hand, lead to changes in the amino acid sequence. 
Therefore, their study finds importance as they directly 
influence the translated primary polypeptide. Such changes in 
amino acid sequence are not only related to their alteration in 
the primary sequence but also may reduce protein solubility or 
destabilize the protein structure. We tried to understand through 
in silico approaches using computational tools for search of 

biomarkers and the structural‑functional relation of SNP with 
respect to its coded protein in gallbladder cancer.

Materials and Methods

Identifying single‑nucleotide polymorphisms involved in 
gallbladder carcinoma
The SNPs for GBC were obtained from PolySearch 2.0[14] and 
were subjected to various in silico analysis, and a pipeline 
was designed for selection of SNPs having structural and 
functional importance. SNPs involved in the GBC were 
enlisted through PolySearch 2.0,[15] with the query keyword 
“Gallbladder Cancer.” A list of 41 SNPs was found to be related 
with GBC and had a greater global minor allele frequency 
(MAF) value [Table 1]. Location of these SNPs, either in the 
coding region or noncoding region, was found using Ensembl 
genome browser.[16,17] SNPs were sorted based on their location 
in coding or noncoding region. The dbSNP database, being the 
most extensive database, was availed for our study in spite of 
its limitations of containing both validated and nonvalidated 
polymorphisms.[18] The rsIDs of SNPs under study were entered 
in the Ensembl and their precise location was obtained. We 
selected missense nsSNPs, synonymous SNPs, and noncoding 
SNPs for our investigation. Separate methods were designed 
to study the functionality of nsSNPs [Figure 1].

Functional analysis of nonsynonymous single‑nucleotide 
polymorphisms
nsSNPs located in the coding region result in amino acid 
variations. PolyPhen‑2 web server[19] and SIFT were used 
to predict any damaging effect of nsSNPs on structure and 

Figure 1: Schematic representation of computational tools for in silico analysis of single‑nucleotide polymorphisms in gallbladder cancer
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function of the protein by analysis of multiple sequence 
alignment and protein three‑dimensional  (3D) structure,[20] 
the protein sequence, database identifiers/accession number, 
the position at which substitution takes place, the amino acid 
being substituted, and the amino acid present in the variant 
type. For our study, each SNP with their respective rsIDs was 

Table 1: List of single‑nucleotide polymorphisms in coding and noncoding region predicted by FuncPred

dbSNP ID Chromosome Position TFBS miRNA (miRanda)

SNPs affecting Regulatory role alteration
rs1065778 15 49307498 ‑ ‑
rs1065779 15 49292103 ‑ ‑
rs11267919 4 3487899 ‑ ‑
rs11614913 12 52671866 Y ‑
rs1361530 1 119767087 ‑ Y
rs1569686 20 30830740 ‑ ‑
rs1800775 16 55552737 Y ‑
rs1801132 6 152307215 ‑ ‑
rs1819698 1 119767042 ‑ Y
rs2234693 6 152205028 ‑ ‑
rs2304463 15 49295412 ‑ ‑
rs2606345 15 72804229 Y ‑
rs2695121 19 55572553 ‑ ‑
rs2830 17 37958089 Y ‑
rs2910164 5 159844996 Y ‑
rs2976392 8 143759934 Y ‑
rs2978974 8 143748866 Y ‑
rs35463555 19 55569492 Y ‑
rs3746444 20 33041912 Y ‑
rs3808607 8 59575478 Y ‑
rs3824260 8 59575744 Y ‑
rs4633 22 18330235 ‑ ‑
rs4646 15 49290136 ‑ Y
rs4818 22 18331207 ‑ ‑
rs523349 2 31659210 ‑ ‑
rs700518 15 49316404 ‑ ‑
rs708272 16 55553789 Y ‑
rs743572 10 104587142 Y ‑
rs7922612 10 95801429 ‑ ‑
rs9340799 6 152205074 ‑ ‑

SNPs in the coding region (nsSNP)

dbSNP ID Chromosome Position Protein associated Predicted damaging by SIFT or PolyPhen
rs10012 2 38155894 Cytochrome P450 ‑
rs1042838 11 100438622 Progesterone receptor 

rs1048943 15 72800038 Cytochrome P450 1A1 ‑
rs1056836 2 38151707 Cytochrome P450 1B1 ‑
rs11887534 2 43919751 ABCG8 

rs2066479 9 98037631s Testosterone 17‑beta‑dehydrogenase 3 ‑
rs2274223 10 96056331 Phospholipase C epsilon 1 ‑
rs2294008 8 143758933 Prostate stem cell antigen ‑
rs4148217 2 43952937 ABCG8 ‑
rs6259 17 7477252 Sex hormone‑binding globulin ‑
rs700519 15 49295260 Cytochrome P450 19A1 

Y: SNPs that affect function, : SNPs predicted to be damaging, ‑: SNPs that don’t affect function, SNPs: Single‑nucleotide polymorphisms, TFBS: Transcription 
factor binding site, nsSNP: Nonsynonymous SNP, dbSNP: SNP database, ABCG8: ATP‑binding cassette subfamily G member 8, SIFT: Sorting intolerant from tolerant

Table 2: Parameters of protein in RAMPAGE

Protein Favored (%) Allowed (%) Outliers (%)
Progesterone receptor 65.2 22.1 12.7
Aromatase 88.8 9 2.2
ABCG8 76.2 14.6 9.2
ABCG8: ATP‑binding cassette subfamily G member 8
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uploaded, and the study was done for every nsSNPs. Prediction 
outcomes could be classified as probably damaging, possibly 
damaging, or benign according to the PolyPhen‑2 score ranging 
from 0 to 1,[18] The score refers to the amino acid substitution in 
the variant type being damaging. These scores are represented 
as HumDiv scores, compiled from all damaging alleles with 
known effects on molecular function, and HumVar scores 
which consist of human disease‑causing mutations. The closer 
the HumDiv score is to 1, it is indicative of greater damaging 
nature of the SNP.

SIFT is a module that takes in a query sequence and uses 
information of multiple alignments for the prediction of 
tolerated and deleterious substitutions for every position of the 
query sequence. It obtains the multiple alignments of chosen 
sequences and calculates the normalized probabilities for all 
possible substitutions at each position from the alignment. 
Substitutions at each position are predicted to be either 
damaging or tolerated based on whether the normalized 
probabilities are less than or greater than a tolerant index 
of 0.05. The nsSNPs were analyzed to obtain the damaging 
SNPs. The SNPs found to be damaging were shortlisted for 
further analysis.

Protein structure prediction
FASTA mRNA sequence was obtained for the proteins wherein 
the SNP was found to be damaging. The site of SNP was 
identified in the protein sequence, and the SNP was subjected 
to further analysis.

I‑TASSER web server[21] enabled generation of the 3D structure 
of the protein and also predicted the biological functions of 
protein molecules from amino acid sequence. It provides 
five models based on the amino acid sequence, and each 
model is assigned an individual confidence scores (C‑score) 
calculated based on the significance of threading template 
alignments and the convergence parameters of the structure 
assembly simulations.[18] A higher C‑score indicates greater 
confidence and vice versa. It also provides a template 
modeling (TM) score which measures the structural similarity 
between two structures. A TM score >0.5 indicates a model 
of correct topology whereas a TM score <0.17 indicates a 
random similarity. It also predicts solvent accessibility and 
ligand‑binding sites. Protein sequence was submitted to the 
webserver, and the protein structure was obtained.

Verification of three‑dimensional model of protein
RAMPAGE Ramachandran plot analysis was used for 
verification of 3D structures. It provides the number of 
residues in the favored, allowed, and outlier region.[22] If a good 
proportion of residues lie in the favored and allowed region, 
then the model is predicted to be good.

Modeling nonsynonymous nucleotide polymorphisms on 
protein structure
Generation of the mutated models of the selected protein 
structure for the corresponding amino acid substitution was 
achieved using Swiss‑PdbViewer (v4.10).[23] The native amino 

acid is replaced with the variant and the.pdb files for the model 
were saved. GROMACS is used as a default force field used 
by the server for energy minimization calculations. Several 
parameters such as total energy (KJ/mol), total electrostatic 
constraint, total bond energy (KJ/mol), torsion (KJ/mol), and 
nonbonded energy  (KJ/mol) were calculated after energy 
minimization for native as well as mutant structure.

The.pdb files were further analyzed by Chimera, an effective 
molecular modeling system used for interactive visualization 
and analysis of molecular structures, sequence alignment, 
docking analysis, supramolecular assemblies, trajectories, and 
conformational analysis.[24]

Protein stability prediction
I‑Mutant 2.0, mCSM, and MutPred were used to predict the 
protein stability upon the mutation. I‑Mutant 2.0[25] was used 
to predict the stability upon single‑site mutation.[26] The user 
can either provide protein structure or sequence as the input. 
Along with the protein structure or sequence, temperature and 
pH need to be specified. The protein sequence consisting the 
damaging SNP was uploaded to I‑Mutant and output obtained 
is in the form of protein stability change upon mutation and 
Gibbs‑free energy change. MutPred[27] predicts the probabilities 
of gain or loss of a function due to a particular polymorphism, 
thus providing an insight to molecular mechanism responsible 
for the disease.[28] The output contains top 5 property scores (p) 
where P is the P value that certain structural and functional 
properties are impacted.

mCSM machine learning method is used to predict 
the effects of missense mutations based on structural 
signatures. mCSM extracts geometric and physicochemical 
patterns  (represented in terms of pharmacophores) using 
a graph representation. These are then used to represent 
the 3D chemical environment during supervised learning. 
Application of these signatures is done in a range of tasks 
including the protein structural classification and function 
prediction, as well as prediction of large‑scale receptor based 
on protein‑ligand prediction.[29]

Noncoding single‑nucleotide polymorphisms functional 
analysis
Tools predicting potential functional effects of SNPs in 
noncoding binding sites such as intron/exon border consensus 
sequences (splice sites), transcription factor binding sites, exonic 
splicing enhancers (ESEs), and microRNA (miRNA) binding 
were used. SNPinfo (FuncPred).[30] and RegulomeDB[31] were 
used to screen SNPs based on their functionality for further 
genetic mapping services. The functionality of the SNPs was 
determined by SNPinfo (FuncPred) web server which helps in 
studying the SNPs for genetic association studies and consists 
of three pipelines for SNP selection. Among the several tools, 
i.e., TagSNP, FuncPred, and SNPseq in SNPinfo web server, 
to study the functionality of the SNPs, we chose FuncPred 
prediction software, which is a composite of PolyPhen, 
SNP3D, MATCH, TRANSFAC 12.1, RESCUE‑ESE, 
ESEfinder, FAS–ESS, miRanda, and miRBase. Queries were 
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submitted for all the SNPs in the genes or chromosomal region 
or with their respective rsID. The SNPs related to the GBC 
were entered in a batch submission with their respective rsID. 
The output was a list of SNPs with possible functional effect.

RegulomeDB software was also used to complement the 
SNP prioritization. Utilizing the online composite database 
integrating a large collection of regulatory information and 
prediction tools to annotate and prioritize potential regulatory 
variants derived from genomic sequencing, RegulomeDB 
uses databases that take their datasets from chromatin 
immunoprecipitation sequencing (ChIP‑seq), histone ChIP‑seq, 
chromatin state information, and expression quantitative trait 
loci (eQTL) information. Thus, it helps in in silico predictions 
through DNase footprinting to identify protein binding sites, 
transcription factors binding domain and regulatory binding 
motif variations of nucleotide variants.[31] It divides the variants 
into six categories. Category 1 variants are likely to affect 
binding and linked to expression of a gene target. Category 2 
variants are likely to affect binding. Category 3 variants are 
less likely to affect binding. Category 4, 5, and 6 variants have 
minimal binding evidence.[18] A batch of noncoding SNPs and 
synonymous SNPs was uploaded to the software with their 
respective rsIDs and each SNP was assigned a score from 1 
to 6. The SNPs predicted to affect binding were shortlisted for 
further analysis by DeepSEA.

The chromatin effects of single nucleotide alteration in 
sequences were predicted using DeepSEA.[32] Through the 
“in silico saturated mutagenesis” approach, prediction of 
chromatin feature informative sequence elements for any 
sequence can be identified. DeepSEA accurately predicts the 
effect of individual SNPs on TF binding with the DeepSEA 
TF‑binding classifiers, which are demonstrated for several 
SNPs that have experimentally validated well‑known effects on 
TF binding. DeepSEA prioritizes functional SNPs on the basis 
of the predicted signals of chromatin effect. DeepSEA supports 
three types of input: vcf, FASTA, and bed. We used vcf format 
for predicting effects of noncoding variants. In vcf format, 
each line has at least 5 tab‑separated fields. The first column 
consists of chromosome name. The second column contains 
position in a chromosome. The variant name is specified in 
the third column. The fourth and the fifth column contains 
reference allele (wild type) and alternative allele (mutant). Log 
fold changes along with probability differences and E‑values 
are essential for evaluating variant’s impact.

Network analysis of potential proteins with other proteins 
involved in gallbladder carcinoma
GeneMANIA was availed for network analysis of potential 
biomarker proteins. Protein‑protein, protein‑DNA, and genetic 
interactions, pathways, reactions, gene and protein expression 
data, protein domains, and phenotypic screening profiles are 
included in GeneMANIA searches.[33]

Results

Using FuncPred we found, among the 41 SNPs, 30 SNPs 
[Table 1] were found to be either synonymous or noncoding 
and 11 SNPs were found to be non-synonymous. Separate 
pipelines were designed for the study of SNPs in the coding 
region and in the noncoding region [Figure 1].

From the PolyPhen‑2 and SIFT analysis, the SNPs in the coding 
region predicted to have deleterious effect were selected for 
further analysis.

All the 11 SNPs in the coding region [Table 1] were submitted 
to the PolyPhen‑2 server. One nsSNP rs11887534 [Table 1] 
associated with ATP‑binding cassette  (ABC) subfamily G 
member 8 was found to be possibly damaging with a very 
high HumDiv score of 0.769 and HumVar score of 0.525. 
Analysis by SIFT predicted two other variants  (rs1042838 
and rs700519) to be highly damaging. rs1042838 associated 
with progesterone receptor was found to be damaging and 
had a median conservation score of 3.56 [Table 1]. rs700519 
associated with cytochrome P450  19A1  (aromatase) was 
predicted to be damaging and had a median conservation score 
of 3.05. We moved forward with these three highly damaging 
SNPs  (rs11887534, rs1042838, and rs700519) to find their 
structure‑function alteration [Figures 2‑4].

Structural analysis of native and mutant protein
rs11887534 is associated with ABCG8 gene. FASTA sequence 
of native ABCG8 was obtained. The location of SNP was 
obtained from NCBI, and the position of mutation was found 
out. Native protein sequence was submitted to I‑TASSER 
in their respective FASTA format. Five models of native 
ABCG8 were obtained as an output; of these, the first model 
with highest C score of − 0.90, TM score of 0.60 ± 0.14, and 
estimated RMSD 10.1 ± 4.6 Å was considered for the analysis. 
Similarly, out of the five models obtained for native aromatase 
protein, the first model with highest C score of −0.69, TM 
score of 0.81 ± 0.09, and estimated RMSD 5.8 ± 3.6 Å, and 

Table 3: Native versus protein mutant out of single‑nucleotide polymorphism

ABCG8 
native

ABCG8 
mutant

Progesterone 
native

Progesterone 
mutant

Aromatase 
native

Aromatase 
mutant

Total Energy (KJ/mol) ‑27918.332 ‑29442.268 ‑21743.91 ‑22558.859 ‑25110.941 ‑25472.408
Total electrostatic constraint ‑21661.68 ‑21797.66 ‑20554.77 ‑20262.72 ‑14933.51 ‑14746.16
Total bond energy (KJ/mol) 675.189 639.677 990.564 926.881 446.003 406.257
Torsion (KJ/mol) 7057.365 6738.392 10358.655 9962.072 3511.209 3376.156
Non Bonded energy (KJ/mol) ‑20744.88 ‑21399.17 ‑21323.85 ‑21740.44 ‑17653.67 ‑17933.77
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for progesterone receptor, the first model with highest C score 
of  −0.29, TM score of 0.75 ±  0.10, and estimated RMSD 
8.1 ± 4.4 Å were considered for the analysis.

RAMPAGE was used to support the quality of predicted 
protein models. All the three protein models showed good 
proportion of residues in the favored and allowed regions in 
RAMPAGE [Table 2 and Figures 2‑4].

To get the variant modelled structure, Swiss‑PdbViewer was 
used. The D19H polymorphism in the ABCG8 [Tables 3 and 4] 
showed deviation from the native model in various parameters 
including total energy after minimization, total electrostatic 
constraint, total bond energy, torsion, and nonbonded energy. 
The molecular analysis by Chimera showed change in hydrogen 
bonding due to the D19H point mutation [Figure 4]. The R264C 
mutation in the cytochrome P450 19A1 (aromatase) showed 
deviation from the native model [Table 3]. The Arg → Cys 
variation at position 264 showed clashes with its neighboring 
glutamate residue at position 261 [Figure 2]. This variation also 
caused a change in hydrogen bonding of Cys at 264 with its 
neighboring residues. The Val → Leu variation at position 660 
in the progesterone receptor [Figure 3] showed clashes with 
its neighboring Phe residue at 794 position and also caused a 
change in hydrogen bonding.

Table 4: Prediction by MutPred for protein structural 
stability

Mutation Protein Top feature alteration
D19H ABCG8 Gain of glycosylation at T16

Gain of catalytic residue at D19
Loss of phosphorylation at S21
Loss of helix
Gain of loop

R264C Aromatase Loss of methylation at K262
Loss of MoRF binding loss of 
catalytic residue at R264
Gain of ubiquitination at K262

V660L Progesterone 
receptor

Loss of catalytic residues at G661
Gain of glycosylation at P663
Loss of MoRF binding

MoRF: Molecular recognition feature, ABCG8: ATP‑binding cassette 
subfamily G member 8

Figure 2: (a) Three‑dimensional analysis of wild and valiant residues of aromatase at position 263. A: Arg (orange color at 264 position). B: Network 
clashes  (yellow lines, indicated with white dotted lines) appeared between variant residue Cys 264  (light blue color) with Glu  (magenta color). 
(b) Ramachandran of predicted aromatase secondary structure

b

a
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Prediction of protein structural stability and other effects
Analysis by I‑Mutant indicates that conversion of negatively 
charged aspartic acid to positively charged histidine amino acid 
at position 19 decreases the stability of ABCG8 gene. I‑Mutant 
also predicted the other two conversions, Arg → Cys variation 
at position 264 and Val → Leu variation at position 660 to be 
destabilizing. All the three SNPs were predicted to be destabilizing 
by mCSM software due to their negative ΔΔG values [Table 5].

MutPred predicted structural alterations due to the SNPs. The 
D19H mutation leads to gain of glycosylation at T16, gain 

of catalytic residue at D19, loss of phosphorylation at S21, 
and loss of a helix  [Table  4]. The R264C mutation causes 
loss of methylation at K262, loss of molecular recognition 
feature (MoRF) binding, loss of catalytic residue at R264, and 
gain of ubiquitination at K262. The V660 L mutation causes 
loss of catalytic residues at G661, gain of glycosylation at 
P663, and loss of MoRF binding. The results obtained from 
MutPred have been summarized in Table 4.

Functional analysis of noncoding and synonymous single 
nucleotide polymorphisms
A list of 30 SNPs was submitted to the FuncPred program 
and the results obtained are summarized in Table 1. Out of 
these 30 SNPs [Table 1], a total of 16 SNPs were predicted 
to have effect on function; out of which, 3 SNPs were found 
to affect miRNA‑binding site and 13 SNPs were found to 
affect transcription‑binding site. RegulomeDB was used to 
complement SNP prioritization. RegulomeDB divided 30 SNPs 
into six categories (Category 1 to Category 6), where 23 SNPs 
had annotation scores [Table 6] and the rest 7 SNPs had no 
annotation data (not shown in table). Out of 23 SNPs, four 

Table 5: Protein structural stability analysis

SNP Protein 
associated

ΔΔG (predicted by 
mCSM)

I‑mutant 
results

D19H ABCG8 −1.107 kcal/mol Destabilizing
V660L Progesterone 

receptor
−0.349 kcal/mol Destabilizing

R264C Aromatase −0.689 kcal/mol Destabilizing
SNP: Single‑nucleotide polymorphism, ABCG8: ATP‑binding cassette 
subfamily G member 8

Figure 3: (a) Three‑dimensional analysis of wild and valiant residues of progesterone at position 660. A: Val (red color) at 660 position. B: Network 
of clashes (yellow lines, indicated with white dotted lines) appeared between variant residue Leu 660 with Phe 794 (violet color). (b) Ramachandran 
of predicted progesterone receptor secondary structure

a

b
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SNPs were found to likely affect binding with a RegulomeDB 
score of 2b (Category 2), one SNP was found to less likely 
affect binding with a RegulomeDB score of 3a  (Category 
3), and the remaining 18 SNPs had minimum functional 
evidence (Category 4, 5, and 6). The four SNPs, i.e. rs2978974, 
rs4633, rs2830, and rs523349 which were predicted to likely 
affect binding had annotations for transcription factor binding, 
DNase peak, and motif hit and thus likely to have regulatory 
roles [Table 6].

All the 4 SNPs predicted to affect binding were subjected to 
DeepSEA analysis to predict the chromatin effects of sequence 
alterations with single‑nucleotide sensitivity. The.vcf files 
for all four SNPs were submitted to DeepSEA. However, 
DeepSEA could analyze only two variants [Figure 5a‑b]. It 
provided chromatin feature probability log fold changes for 
both the variants. The variant (rs2978974) associated with the 
PSCA gene showed five chromatin feature alterations to be 
significant with an E ≤ 0.02 [Figure 5a and Table 7]. The gene 
interactions of the four essential biomarker proteins (ABCG8, 
cytochrome P450 19A1, progesterone receptor, and PSCA) 
with other proteins involved in GBC are shown in Figure 6.

Discussion

Gallbladder carcinoma, a malignant adenocarcinoma of 
gallbladder epithelial tissue, has high mortality rate and 
lacks suitable markers for early diagnosis and prognosis. 
It is essential to detect the potential biomarker out of the 
several genetic markers and protein markers available. Since 
it is difficult to study all the SNPs associated with GBC, 
interpretation of clinically essential novel markers is always 
challenging. In the current study using in silico analysis, we 
could screen important variants which could be potential 
therapeutic targets.

In this study the first of its kind, by in silico analysis of SNPs 
involved in GBC performed by several bioinformatics tools, 
we report (i) seven novel SNPs in coding as well as noncoding 
region which could serve as essential biomarker and could 
be potential therapeutic targets,  (ii) Both synonymous and 
nsSNPs as potential biomarker,  (iii) understanding of the 
structure‑function alteration in nsSNPs, and  (iv) regulatory 
role alteration by SNPs in noncoding region.

Separate pipelines designed for the study of SNPs in coding 
and noncoding region are unique in this study to understand 

Figure 4: (a) Three‑dimensional analysis of wild and valiant residues of ABCG8 at position. A: Asp (green color) at 19 position. B: Variant residue 
His19 (grey color). (b) Ramachandran plot of predicted ABCG8 secondary structure

a
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the functional role of each variant. Three potential variants 
present in the coding region were predicted by SIFT and 
PolyPhen. rs1042838, rs11887534, and rs700519 associated 
with progesterone receptor, ABC subfamily G member 8, and 
cytochrome P450 19A1, respectively, were predicted to be 
potentially damaging SNPs in GBC.

Human ATP transporters, 48 in number, comprising of 
7 subfamilies, sharing similar structure and function by 
transportation of molecules across membranes by utilizing 
the energy derived from hydrolysis of ATP. Of the seven 
distinct subfamilies of ABC genes including (ABC1, MDR/
TAP, MRP, ALD, OABP, GCN20, and White), ABCG8 
belongs to the subfamily White. Very recently, the crystal 
structure of the human sterol transporter ABCG5/ABCG8 
has been deciphered.[34,35] ABCG8 or ATP‑binding cassette 
subfamily G member 8 is an apical membrane sterol export 
pump, expressed in specific tissues of gallbladder, liver, and 
intestine. It belongs to the superfamily of ABC transporters 
that boost the active efflux of cholesterol from hepatocytes 
to bile.[35,36] Excessive amount of cholesterol content in bile 
is associated with development of gallstones. The D19H 
polymorphism in ABCG8 gene is proposed to increase the 
expression of ABCG8 or enhance its function, resulting 
in more efficient transfer of cholesterol into bile and the 
accumulation of cholesterol in the gallbladder forming the key 
step for gallstone formation.[36] Although D19H polymorphism 
in ABCG8 has been earlier reported to be associated with 
the risk in gallbladder stones,[12] no study has been done to 
identify the functional significance of SNP in gallbladder 
cancer. Since full‑length protein structure of native ABCG8 
is not yet available in the protein data bank, it was essential 
to generate a full‑length model of native ABCG8 and find the 
structure‑function alteration of D19H polymorphism. Only 
a partial structure of ABCG8 with PDB ID 5DO7 exists. 
The model of ABCG8 generated was compared in terms of 
several parameters such as total energy after minimization, 
total electrostatic constraint, total bond energy, torsion, and 
nonbonded energy for both native and mutant structure, and a 
clear deviation was observed for native and mutant structure. 
A  variation in terms of hydrogen bonding difference was 
observed. The D19H mutation was also predicted to cause 
a gain of glycosylation at T16, gain of catalytic residue at 
D19, loss of phosphorylation at S21, and loss of a helix. Our 

Table 6: Contd...

dbSNP ID RDB score Category Description
rs2695121 4 Minimal binding 

evidence
TF 
binding + DNase 
peak

rs1801132 4 Minimal binding 
evidence

TF 
binding + DNase 
peak

rs9340799 Nil Nil Nil
rs2234693 Nil Nil Nil
RDB: RegulomeDB, TF: Transcription factor, dbSNP: SNP database, 
SNP: Single‑nucleotide polymorphism

Table 6: List of single‑nucleotide polymorphisms 
predicted by RegulomeDB score

dbSNP ID RDB score Category Description
rs3824260 6 Minimal binding 

evidence
Motif hit

rs3808607 4 Minimal binding 
evidence

TF 
binding + DNase 
peak

rs2976392 5 Minimal binding 
evidence

DNase peak + motif 
hit

rs2978974 2b Likely to affect 
binding

TF 
binding + DNase 
peak + motif hit

rs708272 5 Minimal binding 
evidence

DNase peak + motif 
hit

rs1800775 3a Less likely to 
affect binding

TF 
binding + DNase 
peak + motif hit

rs11267919 Nil Nil Nil
rs2606345 4 Minimal binding 

evidence
TF 
binding + DNase 
peak

rs700518 5 Minimal binding 
evidence

DNase peak

rs1065778 4 Minimal binding 
evidence

TF 
binding + DNase 
peak

rs2304463 Nil Nil Nil
rs1065779 6 Minimal binding 

evidence
Motif hit

rs4646 Nil Nil Nil
rs4633 2b Likely to affect 

binding
TF 
binding + DNase 
peak + motif hit

rs4818 4 Minimal binding 
evidence

TF 
binding + DNase 
peak

rs2830 2b Likely to affect 
binding

TF 
binding + DNase 
peak + motif hit

rs1819698 Nil Nil Nil
rs1361530 6 Minimal binding 

evidence
Motif hit

rs523349 2b Likely to affect 
binding

TF 
binding + DNase 
peak + motif hit

rs1569686 5 Minimal binding 
evidence

DNase peak

rs2910164 Nil Nil Nil
rs11614913 5 Minimal binding 

evidence
DNase peak

rs3746444 5 Minimal binding 
evidence

DNase peak + motif 
hit

rs743572 4 Minimal binding 
evidence

TF 
binding + DNase 
peak

rs7922612 5 Minimal binding 
evidence

DNase peak

rs35463555 4 Minimal binding 
evidence

TF 
binding + DNase 
peak

Contd...
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findings are indicative of the fact that there could be a possible 
single‑point factor D19H polymorphism in ABCG8 gene that 
is associated with the genesis of both gallbladder cancer and 
gallbladder stones and finds importance as a biomarker in both 
disorders as leading to significant alteration in the structure 
and function of the protein.

The R264C polymorphism in aromatase and V660  L 
polymorphism in progesterone receptors show a clear 
deviation of energy parameters for native and mutant structure. 
A possible reason for R264C polymorphism to decrease the 
stability could be due to the smaller size cysteine residue in 
the mutant structure which shows clash with the neighboring 
glutamate residue at position 261. V660 L polymorphism 

causes a clash between leucine and phenylalanine residue at 
794 position. This clash could possibly be the reason due to 
the decrease in stability of the mutant structure.

SNPs either noncoding or synonymous could impair the 
regulatory roles and thus find an important place to be 
potential biomarker for GBC. RegulomeDB provided three 
SNPs (rs2978974, rs4633 and rs2830) [Table 6] either 
synonymous or non-coding, which had annotations for 
transcription factor binding, DNase peak, and motif hit and 
thus have regulatory roles. Out of these three SNPs, one 
SNP rs2978974 associated with PSCA showed significant 
chromatin feature alteration of EZH2 and SUZ12 with 
E  ≤  0.02  [Table  7]. Thus, this variant associated with 

Table 7: Chromatin feature alteration for PSCA gene

Chromatin features Cell type Effect (log 2‑fold change) E Normalized (P)

Reference Alternative
EZH2 H1‑hESC −0.17634 0.011047 0.11462 0.102839
SUZ12 NT2‑D1 −0.14663 0.014651 0.074535 0.067712
EZH2 HUVEC −0.17546 0.015497 0.050659 0.044996
EZH2 NHDF‑	

Ad
−0.14576 0.015604 0.060729 0.054996

EZH2 NHLF −0.11262 0.018788 0.104873 0.097851

Figure 5: (a) A: Chromatin feature alteration sorted by log2 fold change in PSCA gene. B: Chromatin feature alteration sorted by chromatin feature 
in PSCA gene. (b) A: Chromatin feature sorted by log2 fold change in SRD5A2 gene. B: Chromatin feature alteration sorted by chromatin in SRD5A2

a
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R264C polymorphism in cytochrome P450  19A1, and 
V660  L polymorphism in progesterone receptor are the 
most deleterious nsSNPs in gallbladder cancer. Due to the 
observed prominent alteration of the protein 3D structure, these 
markers find significance in drug targeting and therapeutic 
importance.  (ii) We also report three SNPs (rs2978974, 
rs4633 and rs2830) [Table 6] either noncoding or synonymous 
and a missense SNP(rs523349), which had annotations for 
transcription factor binding, DNase peak, and motif hit and 
thus reveal a deleterious effect in GBC and finds significance 
as biomarkers for early diagnosis of GBC. (iii) The variant 

PSCA can be potential biomarker. PSCA has been shown 
to be downregulated due to methylation in nonneoplastic 
gallbladder lesions with growth‑suppressive effects in 
adenocarcinoma[5] suggesting its function as a tumor 
suppressor. Although the role of PSCA has been reported 
in several physiological functions including cell adhesion, 
signal transduction, inhibition of cell proliferation, and/
or induction of cell death, its biological functions in 
carcinogenesis are not yet fully understood.

In our study through in silico approaches, we strongly report 
for the first time that  (i) D19H polymorphism in ABCG8, 

Figure 6: Gene interaction network. (a) Overall interaction of the genes involved in gallbladder cancer. (b) PSCA interacts with CYP17A1. (c) PGR 
interacts with ESR1 and HSD17B3. (d) CYP19A1 interacts with HSD17B1, CYP1A1, ESR1, HSD3B2, LRPAP1, CYP7A1, CYP7B1, and CYP17A1. 
(e) ABCG8 interacts with ABCG5
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rs2978974 in PSCA [Figure 5a] showed significant chromatin 
feature alteration and thus could be potential biomarker for 
early diagnosis.

The gene network analysis showed the interactions of these 
potential biomarker proteins with other proteins involved in 
gallbladder carcinoma. It is pretty much clear that the SNPs in 
the potential biomarker proteins could alter their interactions 
with other protein downstream, thus resulting in a major 
malfunction in the cascade of reaction. CYP19A1 interacts 
with HSD17B1, CYP1A1, ESR 1, HSD3B2, LRPAP1, 
CYP7A1, CYP7B1, and CYP17A1. PSCA interacts with 
CYP17A1. PGR interacts with ESR1 and HSD17B3. ABCG8 
interacts with ABCG5.

Our current study has highlighted SNPs, both in the coding and 
noncoding region, that play important role in GBC and may 
be exploited as markers to the disease. Due to the common 
SNP of D19H in ABCG8 region being associated with both 
gallbladder cancer and gallbladder stones, the questions as to 
whether one disease leads to the other or are there other factors 
involved in the genesis of gallbladder cancer, which remains 
the future scope of research. The other two SNPs, R264C 
polymorphism in aromatase and V660 L polymorphism in 
progesterone receptors in the coding region along with the 
rs2978974 in noncoding region of PSCA, could also be 
important biomarkers and thus potential drug targets for 
gallbladder carcinoma.
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