Konstantinos Kalafatakis1, Vasiliki Gkanti2, Connie A Mackenzie-Gray Scott3, Apostolos Zarros2, George S Baillie3, Stylianos Tsakiris4
1Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
2Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Gardiner Laboratory, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
3Gardiner Laboratory, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
4Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
DOI: 10.4103/0976-9668.166099

ABSTRACT

Hyperprolinaemia is characterized by increased tissue accumulation of proline (Pro) and is known to exert serious cognitive and/or neuropsychiatric symptomatology as a direct result of Pro accumulation in the brain. The aim of this study was to explore a putative link between experimentally-simulated hyperprolinaemia and the activity of acetylcholinesterase (AChE); a crucial neurotoxicity marker. In vitro experiments were undertaken on purified eel-derived AChE, as well as on adult mouse brain homogenates, in order to examine the effect of a spectrum of Pro concentrations (3, 30, 500, and 1000 μM) on this marker. Our data showed that although Pro exerted a significant inhibitory effect on pure AChE activity, mouse brain-derived membrane-bound AChE activity was found either unaltered or significantly increased following incubation with Pro. The use of AChE activity as a neurotoxicity marker within the context of experimentally-simulated hyperprolinaemia should be considered with caution and in parallel with a number of other experimental parameters.

Keywords: Acetylcholinesterase, hyperprolinaemia, neurotoxicity, proline.

Please follow and like us:
News Reporter