Madhura P Dixit1, Manoj A Upadhya2, Brijesh G Taksande1, Prachi Raut1, Milind J Umekar1, Nandkishor R Kotagale3
1Department of Pharmacology, Division of Neuroscience, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, India.
2Department of Pharmacology, Division of Neuroscience, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur; Department of Biology, Neuroscience Lab, Indian Institute of Science Education and Research, Pune, India.
3Department of Pharmacology, Division of Neuroscience, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur; Department of Pharmacology, Government College of Pharmacy, Amravati, Maharashtra, India.
DOI: 10.4103/jnsbm.JNSBM_239_17
ABSTRACT
Objective: The involvement of imidazoline receptors in the effect of agmatine was studied in locomotor recovery following experimental SCI (ESCI) in mice. Methods: ESCI was induced in mice using compression method. Locomotor function score (0–10) was measured on day 14 following ESCI. Results: Agmatine (2.5, 5, and 10 mg/kg) treatment through intraperitoneal route for 14 days following ESCI, dose-dependently improved the motor function score. Clonidine (0.1 mg/kg; imidazoline I1 receptor agonist) or moxonidine (0.5 mg/kg; I2 receptor agonist) treatment 15 min before agmatine (2.5 mg/kg) daily for 14 days, following ESCI, significantly potentiated the effect of per se agmatine. On the other hand, 15 min before treatment of efaroxan (1 mg/kg; imidazoline I1 receptor antagonist) or idazoxan (3 mg/kg; imidazoline I2 receptor antagonist) significantly blocked the motor function score of agmatine (10 mg/kg). Conclusion: These data suggest that imidazoline receptors may modulate the locomotor recovery following ESCI in agmatine treated mice, perhaps through I1/I2 receptors.
Keywords: Agmatine, Imidazoline receptors, Locomotor recovery, Motor function score, Spinal cord injury.