Neetu Gupta, Nageswari Gandham, Savita Jadhav, Ravindra Nath Mishra
Department of Microbiology, Padmashree Dr. D.Y. Patil Medical College and Research Center, Pimpri, Pune, Maharashtra, India.
DOI: 10.4103/0976-9668.149116

ABSTRACT

Background: Acinetobacter is clinically important pathogen with widespread resistance to various antibiotics. We assessed the incidence of Acinetobacter infection at a tertiary care hospital, analyze their resistance pattern and identify the production of extended spectrum β-lactamases (ESBLs) and metallo β-lactamases (MBLs). Materials and Methods: The study was conducted in tertiary care hospital, India over a period of 2 years. Acinetobacter species were isolated from various clinical samples received in Department of Microbiology. After identification, Acinetobacter isolates were speciated and antibiotic susceptibility was determined by the standard disc diffusion method. ESBL and MBL production was detected by the double disc synergy test and combined disc diffusion test respectively. Results: Of 3298 infected samples, 111 (3.36%) were found to be Acinetobacter. The most predominant species was Acinetobacter calcoaceticus-A. baumannii (Acb) complex (72%). High incidence of resistance was recorded for piperacillin (55%), followed by ceftriaxone (46%) and ceftazidime (46%). Isolation rate and antibiotic resistance was higher in the Intensive Care Units (ICUs) of the hospital. ESBL and MBL production was detected in 31.5% and 14.4% of the isolates respectively. Discussion and Conclusion: A high level of antibiotic resistance was observed in our study and maximum isolation rate of Acinetobacter was in the ICUs. Acb complex was the most predominant and most resistant species. The analysis of susceptibility pattern will be useful in understanding the epidemiology of this organism in our hospital setup, which will help in treating individual cases and controlling the spread of resistant isolates to other individuals.

Keywords: Acb complex, Acinetobacter spp., Antibiotic resistance, intensive care units.

Please follow and like us:
News Reporter